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Preface

These notes were taken from a series of seminars on

Gravitation and Relativity presented at the Institute for

Space Studies, NASA Goddard Space Flight Center during the

academic year 1961-1962. Professor R. H. Dicke of Princeton

University organized the series as an introduction to

the subject for non-experts, emphasizing the observable

implications of the theory and the potential contribution the

space sciences may make towards a better understanding of

general relativity.

The approach has been conceptual rather than formal.

For this reason, this record does not include a complete

mathematical development of the subject, but, we hope, does

contain sufficient mathematics to elaborate on the conceptual

discussions.

The notes were prepared with a minimum amount of

editing from a transcript made from recordings of the lectures.

The speakers have not had the opportunity to read and

correct the final manuscript. Hence, we accept responsi-

bility for errors and omissions.

H. Y. Chiu

W. F. Hoffmann
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In my last lecture, I discussed a number of general features

of gravitation theory.

point for this lecture.

Two of these features furnish the starting

i) The requirements that a theory of gravitation be

expressed in generally covariant equations and that inertial

and gravitational forces both be obtained from a single invariant

lead us naturally to represent gravitational effects by a tensor

field. Einstein's theory is a particular example of a tensor

theory in which the tensor field is the only field exhibiting

gravitational effects and the geometry is so defined that this

tensor is the metric tensor of the geometry.

2) Einstein's general theory of relativity is not rela-

tivistic in the Machian sense. That is, this theory is not

limited to a description of the relations between positions of

matter. Rather, properties such as fixed directidns

are ascribed to empty space in the complete absence of matte_

and motion is referred to a preferred, or absolute, geometry.

In this lecture, I will discuss how Einstein's theory can

be modified to overcome in part its absolute space-time character

by introducing a second field quantity into the equations.

Then} I will go on to relate this modification to some of the

problems connected with geophysics and astrophysics.



I anticipated some of the characteristics of this modi-

fication in the last lecture with the discussion of Sciama's

model. Sciama and others have Pointed out that it is possible

to incorporate Mach's principle more completely into general

relativity by introducing a gravitational constant which is not

strictly a constant but is a function of some field variable.

This possibility has also been raised in connection with

a time varying gravitational constant. The suggestion of a time

varying gravitational constant may have first appeared in physics

in connection with Milne's ideas of cosmology. Later Dirac (I)

suggested that certain numerical coincidences of large cosmologi-

cal numbers might imply time-varying gravitation, that is, a

gravitational constant which is not truly a constant, but a

function of time. Later Jordan (2) attempted to put Dirac's

ideas into a proper field-theoretic form by introducing a gravi-

tational "constant," a variable "constant" as function of a

scalar.

I shall approach this matter in a slightly different way,

by pointing out explicitly that in addition to the gravitational

field which is connected with the geometry of space, one can

(1) P. A. M. Dirac, Proceedings Royal Society (London) A 165,

199 (1938).

(2) P. Jordan, Schwerkraft und Weltall (Vieweg und Sohn,

Braunschweig, 1955).
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have long-range matter-type fields. We are already familiar with

one of these, the electromagnetic field. Two charged particles

can interact with each other over a long distance through electro-

magnetic fields. In the previous lecture I showed that this kind

of vector field appears to be ruled out for producing long range

effects of cosmological importance. Large sections of the universe

cannot interact with each other through vector interactions obeying

Maxwell-type (gauge invariant) equations in a uniformly isotropic

universe.

Within the framework of relativity there are two other

fields that might play important roles in cosmology. One of

these is a scalar long-range field, and the other is a tensor

long-range field, that is, a second tensor field, in addition

to the metric tensor that is associated with gravitation in

Einstein's theory. I shall take these in inverse order,

discussing the tensor field first.

It is possible to have a tensor interaction in addition

to the metric tensor of space. But it would be very difficult

to incorporate into the theory another such long-range tensor

field. A second tensor field would be expected to lead to some

queer results, results that would show up in experiments of the

kind that Hughes and his students performed.
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Professor Hughes, and independently Drever, was able

to demonstrate the isotropy of space to a very high precision.

This experiment is discussed in detail in Lecture 6 • The

reason the tensor field is expected to run into difficulty with

the Hughes experiment was first discussed quantitatively by J.
(2a)

Peebles. It is this: Assume there is some second tensor field.

We may choose a coordinate system for which the metric tensor is

locally Minkowskian. Then, generally speaking, the second tensor

will not be locally Minkowskian but willl have some form for which

the spatial parts of this tensor exhibit an anisotropy. If there

are forces associated with this second tensor field, it would

be expected that this spatial anisotropy would appear in the

results of the Hughes experiment.

If we should happen to find isotropy simultaneously for both

tensors in a particular coordinate system, then we could simply

transform to a moving coordinate system. If the tensors are not

identical, we can always, by moving, obtain a lack of spatial

isotropy in one of the tensors. I believe that, because of the

tremendous precision and sensitivity of the experiment, this is

a compelling argument against the second tensor interaction.

I see no very obvious way of getting a second long-range tensor

(2a) J. Peebles & R. H. Dicke, "The Significance of Spatial

Isotropy" (to be published).
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field into physics.

The case for the scalar field is more promising. I shall

summarize its properties which were mentioned in my last lecture.

It is remarkable that for the little we know about this inter-

action in an observational way (in fact,even its existence is

in doubt) we can delineate its properties so well. This is

because the interaction is so simple that a couple of observa-

tions and the requirement of Lorentz invariance are sufficient

to specify fairly completely its properties. The properties of

a long-range scalar interaction (a neutral, scalar, massless

field) are the following:

i) The scalar field can only be weak. Its strength must

be of the order of the gravitational interaction.

2) The interaction of a scalar field with a particle cannot

occur unless the mass of the particle is a function of the

scalar.

This means that work must be done on the particle to move

it in a non-constant scalar field. This implies an extra force

which acts on matter by virtue of its interaction with the

scalar. We express this in the form of an equation by

J
' ,i = (i)
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where

, (2)

and

(3)

The great accuracy of the E_tv_s experiment imposes the

requirement that if there is such a scalar interaction, all

particles must suffer essentially the same type of scalar interaction.

Otherwise, there would be anomalous accelerations. In other

words, if the mass of the proton plus electron varied with the

scalar with some different functional dependence than the mass

of the neutron, then, generally speaking, a neutron would fall

with a different acceleration from that of an ordinary hydrogen

atom. So we face the requirement that the functional dependence

of the mass on the scalar field variable should be equal to

some constant times some standard function which is the same

for all particles.
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The assumption that the mass of a particle is a function

of a scalar leads to some rather strange effects.

lar, the gravitational coupling "constant," then,

constant. The gravitational constant can be given as a

dimensionless number, a coupling constant, in terms of atomic

constants as

In particu-

is not really

G .z - _0

P _ I0 (5)
{c

where _p is the mass of the proton. But if the mass of the

proton varies from one place to the other, this ratio also will

vary so that the gravitational interaction expressed in atomic

units is not constant.

Normally the dimensionless coupling constants of physics,

such as

oL = e -_ _ (6)

and

_ C_ (7)

-7-



/
l
/

/

are regarded as fai___t accompli of nature, numbers preordained

and unrelated to other physical dimensionless numbers. However,

if the gravitational coupling "constant" is variable, and is

determined as a function of some scalar field variable, in turn

determined by the matter distribution in the universe, it becomes

possible to understand the extraordinary value of this number.

In my opinion, the number 10 -40, contrary to what Eddington

thought, would not be expected to appear in a formalism as a

pure number of simple mathematical origin. However, with the

above interpretation, _ may be considered to be small

because the universe has so many particles ( _ 1080). This

large amount of matter, at great distances in the universe,

generates a local value of _ F such that the gravitational

coupling constant is small.

There is another remarkable feature associated with varying

particle masses. If the masses of atoms vary, so also do their

periods and diameters and as a result the lengths of meter

sticks and the periods of clocks. These are all affected by

the value of the scalar field. A meter stick at one place has

a different length than a meter stick somewhere else (Figure i)

because the geometry which I have been using to describe these

effects is not the geometry which is measured by meter sticks
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and clocks but that given by the metric tensor of Einstein's

equations.

FIGURE 1. The unevenly spaced lines represent the curved

geometry given by Einstein equations relative to which the

length of a meter stick varies from place to place as a

function of the scalar field.

We have a problem then of redefining the geometry, if we

wish, in such a way that the length of a meter stick does not

change. That is, we may define the unit of length everywhere

to be that length measured by a meter stick which is transported

from place to place (Figure 2). If I redefine the geometry

in this way, such that meter sticks and clocks do behave

-9-



FIGURE 2. Relative to an appzopriatelyredefined geometry not
satisfying Einstein's equations the length of a meter stick
is constant.

properly, and the masses of particles do not vary, then I

discover that two things happen:

i) The field equation for the metric tensor is not that

of general relativity. It is a modified equation.

2) With these modified equations, the gravitational

constant is not a constant, but varies from one place to another.

All the other physical constants are properly constant.

This type of formalism for which the equations of general

relativity are replaced by some modified equations was first
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introduced by Jordan. The particular modification I will use is

closely related to one of the forms of Jordan's equations.

The most compact way of presenting the theory is in terms

of the variational principles from which the equations are

obtained. In general relativity one gets the Einstein field

equations and equations for the motion of matter from a varia-

tional principle of this kind:

= 0
(8)

is the contracted curvature tensor, G is the Gravita-

tional constant, and _ is the Lagrangian density of matter.

If we carry out the indicated variation for the metric tensor

components we obtain Einstein's field equations. If we carry

out a variation on the particle coordinates that appear in the

Lagrangian density for matter, we obtain the equations of motion

of matter. All the equations of physics are contained in the

variational principle.

In order to introduce a scalar field explicitKy, I must

add to the Lagrangian density of matter a Lagrangian density

for the scalar field.

form:

The variational principle then has the
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where for convenience we choose 5 to have the form
A

(i0)

is the scalar field, oo is a constant which can be thought

of as a coupling constant for the field. In addition to the

scalar appearing explicitly in the scalar Lagrangian density

it appears also explicitly in the masses of the particles in the

matter Lagrangian. This is assumed to be of the form

_n = on _ -y_
o (ll)

I will indicate later why this form is particularly interesting.

From equation (9) we obtain the Einstein field equations

for the components of the metric tensor and new equations of

motion for particles. In the units given by this geometry meter
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sticks behave strangely. They contract and expand as they are

moved from one place to another. Clocks run fast one place and

slow another. But we can redefine the units of measure in such

a way that meter sticks do not have this strange behavior.

We discover that the corresponding transformation of the equations

leads to the following variational principle where _ is a

new scalar with dimensions of _-l and _ _ _ •

In this equation the particle masses appearing in _ are no

longer variable but are now constant.

This is similar to one of the Jordan-type variational

principles. It leads to gravitational interactions which are

described not by a metric tensor, but a metric tensor plus a

scalar. Equation (5)is essentially one of the Jordan equations.

It was first discussed in relation to Mach's Principle by C.

Brams and R. H. Dicke (3). The transformation from equation

(12) to equation (9) was discussed in (4). Matter obeys the

(3) C. Brans & R. H. Dicke, Physical Review, 124, 925

(4) R. H. Dicke, Phys_ca_ Review, 12____5,2163, (1962)

-13-
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usual kinds of equations of motion that we are familiar

with from Einstein's theory. But Einstein's field equations are

not valid.

To summarize, in the form of the theory in which Einstein's

equations are satisfied meter sticks behave in a strange way.

in the form in which meter sticks behave properly _,_ E

field equations are not valid. We have the choice of one or the

other form. They are completely equivalent physical descriptions.

They differ from each other only in the way that we have defined

our units of measure and hence our geometry. This equivalence

has been discussed in (3).

It is interesting that equations of this kind seem to be

compatible with Mach's principle. Also they imply a position

and time varying gravitational constant. It appears difficult

to obtain a theory incorporating Mach's principle with only a

metric tensor and without a scalar field. I shall indicate

what this type of theory implies about the variation of gravity

with time and position. Then I would like to describe as nearly

as I can what would be the effect on the solar system of the

gravitational interaction changing with time.

For a static situation, and from equation (12), the field

equation for the scalar field is
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_ _ -_ (13)

where T is the contracted energy momentum tensor of matter.

For a time-varying matter configuration we must replace the

Laplacian operator by the d'Alembertian operator. In a Min-

kowskian coordinate system, neglecting curvature effects, this

operator has the form shown in equation (14):

(14)

This equation implies that as the universe,assumed uniform,

expands with time and the amount of visible matter in the

universe changes, the scalar connected with that matter

distribution changes.

As a consequence gravitation must get weaker with time.

One can make a quite reasonable guess as to how fast it should

get weaker with time. This turns out to be of the order of

3 parts in i0 II per year, assuming the theory as presented here

is valid.

This variation implies many interesting observable effects

concerning the history and present state of the solar system
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and the galaxy. However, the data that one has to deal with

always haveso many possible explanations that there is little

if any hope of demonstrating from the following considerations

that a variation in _ occurs. But on the other hand, if you

were to give me a good laboratory proof that the gravitational

expected effects which would occur in connection with this chang-

ing _ , would not be unreasonable.

One of the primary effects of a gravitational constant

getting smaller with time is connected with stellar evolution.

The reason for this is that the luminosity of a star is a rather

sensitive function of the gravitational constant. If the gravi-

tational constant were getting weaker with time the luminosity of

a star would be decreasing. This would affect our observations

in two different ways:

i) The lifetime of a star is now determined from its present

state of evolution assuming a constant gravitation constant in

the past. This determination would be wrong if the star had

evolved more rapidly in the past because of a stronger gravi-

tational constant.

2) The sun would have had a greater luminosity in the past

than it has now. This would lead to higher surface temperatures

of the earth and other planets in the past.
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I will examine the effect of a changing G on stellar

evolution first. One can describe the situation rather simply.

As a consequence of the virial theorem, the gravitational

potential energy of a star is of the order of magnitude of the

kinetic energy. This in turn is proportional to the central

temperature of the star because the centra! temperature is a

measure of the kinetic average energy of the particles. Therefore

we may write

GI' T
(15)

where M, _ and T are the mass, radius, and central tempera-

ture of the star respectively. If we hold the radius constant

while allowing the gravitational constant to change we can see

that the change in central temperature is proportional to the

change in _ . On the other hand, the rate at which a black

body radiates is proportional to the fourth power of the tempera-

ture. Therefore, in the most naive way, we would expect the

luminosity to vary as the fourth power of the gravitational

constant.

The situation is not quite this simple. First of all, this

argument would only be true if the opacity were temperature-

-17-



independent. In the case of very massive stars (very bright

stars) where Compton scattering plays a dominant role in deter-

mining the opacity, the Compton cross-section of electron is

fixed and is independent of the temperature. In that case we do

expect the luminosity to vary roughly as the fourth power of

the gravitational constant.

G (for very massive star) (16)

However, in the case of a star of the order of the sun's

mass, the bremsstrahlung process, or, as the astronomers call

it, the free-free transition, is the dominant mechanism deter-

mining the opacity of the star. In this particular case the

free-free transition is rather strongly temperature-dependent

and contributes an additional third or fourth power to the

dependence of the luminosity.

mass the luminosity goes as

For a star of roughly the sun's

(for a star of solar mass) (17)

The simplification of holding the radius constant is in

no sense justified. The central temperature of a star is

determined by the temperature at which nuclear reactions go.

This temperature does not depend on _ What really happens
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is that the radius rather than the central temperature changes.

However, it turns out from more careful considerations that the

luminosity dependence on the gravitational constant we have obtained

is approximately correct whether the radius or the central

temperature changes.

Thus for a _ta_ ux-= _Au,_ _uL,'_ ,LLass L_ luminosity i_ a rather

sensitive function of _ The change of luminosity is of the

order of eight times the change in the gravitational constant.

If the G variation is of the order of 3 parts in i0 II per

year, then the luminosity variation will be given by

In a period of four billion years this would make this change

in luminosity the order of I0_.

A _ variation of this rate could play a rather important

role in stellar evolution rates and lead to a serious dis-

crepancy in the presently determined stellar evolutionary age

of stars.

It is another more difficult matter to determine how the

radius changes.

would vary.

It is somewhat uncertain as to how the radius

-19-



Now I will consider the history of the galaxy as we see

it and discuss how an accelerated stellar evolution in the past

would affect our observations. We picture our galaxy as origin-

ally a large mass of hydrogen which in a very short time after

its formation produced an initial population of stars. These

stars are called Population ii. They are found in globular clus-

ters and as field stars of high velocity. The reason for

believing that the formation of Population II stars all hap-

pened in a rather short time is that these high random velocities

appear to reflect the initial turbulent motions of the gas.

If this is the case it might mean that Population II was

formed in a time which is of the order of the characteristic

time for turbulence to damp out in the galaxy. This time was

probably under 200 million years.

Another possibility is that the initial population was so

bright and active with OB type and other massive stars that the

turbulence was driven by the radiation from these stars. Then

it might have been maintained for as long as one billion years.

The turbulence could not have been maintained by bright stars

of the initial population for much longer than one billion

years, for massive stars do not live long. The stars that have

the right ultraviolet spectrum to drive turbulence have a short

-20-



lifetime. Something up to one billion years for the time of

formation of the principal part of Population II seems to be

indicated.

This time scale seems to fit reasonably well with Salpeter's

suggestion that the rate of formation of stars is proportional

to the amount of gas present. This ,A,_111_ 1_ *_ _m_thing 1_

two-tenths of the total life of the galaxy for the halo forma-

tion period. This is somewhat longer than one billion years.

It is of the order of two billion years.

Another thing which characterizes Population II is the

very small amount of heavy elements in these stars. They seem

to have been formed out of hydrogen.

On the other hand the thing that characterizes Population

I stars is that they all seem to have about the full solar heavy

element abundance. The measurements which Arp and others have

made indicate that the fractional abundance of heavy elements

increases in time roughly as given in Figure 3. The logarithm

of the ratio of metal abundance to hydrogen is plotted on some

arbitrary time scale. The metal abundance rises very rapidly

to solar abundance. The very old cluster NGC - 188 shown on

the diagram after the formation of Population II seems to have

as much heavy element content as the sun.
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FIGURE 3. The metal-to-hydrogen ratio, relative to that in

the sun as a function of the time at which the star clusters

formed (Arp) .

There is considerable uncertainty about the size of the

numbers in Figure 3 because it is quite difficult to measure

small changes in heavy element abundance. But the indication is

that the principal heavy element formation occurred in stars in

the halo population. This is the reason that Population II

and halo stars are associated. After the halo population was

completed the lower velocity stars started appearing. They

seem to have most of the heavy elements in them from the
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beginning. Very little more has to be added later on.

In the initial population, there were stars of a type no

longer found in the galaxy, namely massive Population II stars.

We no longer see them and do not know their properties on the

basis of observations. They may have been supernova prone; they

may have b_=_,^A-_e prlmary" source _v....._h_ heavy elements. With

the assumption of a larger gravitational interaction in the

past, this could have affected the stability of stars in such a

way as to make supernova formation likely.

One has a way of dating stars which essentially depends

on asking how long it takes them to burn their hydrogen. They

start out with hydrogen and some heavy elements and the nuclear

reactions occur at the core. The burning in the core keeps

moving out as the hydrogen at the center is used up. As it moves

out, the luminosity increases slightly. Finally these stars

reach a phase where they start changing their form completely.

A great expansion takes place and they turn into red giants.

Figure 4 is the familiar Hertzsprung-Russell diagram for

stars. The logarithm of the luminosity is plotted against the

logarithm of the surface temperature.

of how rapidly a star is radiating.

1 in these units.

diagram.

Luminosity is a measure

The sun's luminosity is

The sun's temperature is indicated in the
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FIGURE 4. Hertzsprung-Russell diagram of stellar distributions.

When a star is first formed it falls on the straight line

referred to as the main sequence. The mass of the star deter-

mines its initial position on the main sequence. The more massive

stars begin with higher luminosity and temperature. After the

star has burned a certain faction, some say 20 to 30 percent

of its hydrogen, it moves off the main sequence rather rapidly

over into the red giant region. After this, it is not
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completely clear what happens. Presumably the star ends up

eventually as a white dwarf. Or else, as mass loss takes place,

it might do something quite complicated.

The procedure, then, for determining the age of a star in

terms of its luminosity involves the time it takes for a star

of a particular mass to burn some 20 to 30 percent of its hydrogen.

This percentage for the star to burn before moving off the main

sequence is calculated from stellar evolution theory. A set

of stars all made at the same time, the Pleiades cluster for

example, would initially have fallen along the main sequence.

But the massive luminous stars burn up their hydrogen rapidly

and move off the main sequence into the red giant region. So

we find that at the present time the Pleiades do not fall com-

pletely on the main sequence, but fall along the curve shown.

The shape of this curve (the point at which it leaves the main

sequence) enables us to determine the age for this cluster of

stars. This determination should be as good as our 20 to 30

percent figure.

The Pleiades are quite young. In the case of an older

cluster, the massive stars are already dead. They have turned

into red giants. Then, presumably they evolved rather quickly

ending up as white dwarfs. The stars of a very old cluster,

-25-



M 67, are given in the lowest curve.

These curves do not r_present a time sequence. A partic-

ular star does not move along the curve. The curves represent

the distribution of stars at some particular time. This distri-

bution enables one to obtain a measure of the age of the cluster.

This is the basis for stellar evolutionary ages. If gravita-

tion is changing with time, the ages determined this way will

be faulty.

Figure 5 is a table of ages of various groups in the

galaxy. The globular clusters are among the oldest stars that

we know. Their stellar evolutionary ages have been given as

25 or 26 billion years in three cases at least, and 22 I think

in a fourth case. These are the figures I will use.

We will take 25 billion years to be the age determined

assuming a constant G . Then with the accelerated evolution that

would result from increased gravitation in the past this comes

down to about 7.8 billion years. This is still a little

uncomfortably close to the age of the universe that one obtains

from the Hubble expansion. The Hubble expansion age for the

universe, assuming an evolving universe of the closed or flat

type, is about 8 billion years.

Let me run through the effect of a varying _ on some
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Object

Globular cluster
Old galactic cluster

NGC 188
Sun
Sun
Galactic system

Elliptical galaxies

Uranium 25%

prompt

"50%"

Universe

Universe (flat)

Universe (closed)

Universe (open)

Type of age

Stellar evolution

Stellar evolution

Stellar evolution

Radioactivity

From depletion of

hydrogen gas

Stellar evolution

(mean age)

Time of first

formation

Time of first

formation

Hubble (galactic

expansion)

Based on Hubble age

Based on Hubble age

Based on Hubble age

General I

relativity I

(Constant G) I

(Positive

curvature )

Brans- Dicke

_=6

25

16

4-15

4.5

5-12

i0-16

ll.1

7.5

13.0

8.6

< 8.6

< 13

>8.6

7.8

7.0

2.5-6.9

4.5

5-12

5.5-7.0

ll.l

7.5

15.0

8.0

• • •

FIGURE 5. Age (in unit 109 years)
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of the other ages as shown in Figure 5. In the old clusters

I mentioned before)16 billion years goes to 7. Notice the very

tight compression to only a 0.8 billion year difference

between the globular cluster and the old galactic cluster,

NGC 188, which differ very greatly in their composition.

There is not a good evolutionary age for the sun because of

the fact we do not know its helium abundance. It

is believed that the sun's evolutionary age could lie anywhere

in the range shown. The radioactivity age for the sun, however,

might be taken to be the age of the meteorites. This is of the

order of 4.5 billion years.

The age for our galactic system is based on Salpeter's

ideas about the way the galaxy evolves. His assumption is that

stars are formed at a rate proportional to the amount of hydrogen

present. From the present e-folding rate for the condensation

of hydrogen into stars we obtain about 5 to 12 billion years

for the age of the galaxy. In the case of elliptical galaxies

there is a determination of an age based on some work of Hoyle

and Crampin (5). From the color distribution of the elliptical

galaxies, one determines an evolutionary age of the order of

16 billion years. This age becomes 5.5 to 7 billion years

(5) J. Crampin and F. Hoyle, Monthly Notices Royal Astronomical

Society, 12___2, 27 (1961).
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in the revised time scale for stronger gravity in the past.

Well, then, one of the effects of a stronger gravitational

constant in the past is the shifting of these old stars down

to younger ages. This gets them under the age of the galaxy

based upon an expanding model of the universe. But as I pointed

out, there is considerable uncertainty about these ages. I remem-

ber it was only some 4 or 5 years ago that the globular clusters

were said to be some 6.5 billion years old. So you see that this

whole thing is considerably in flux and one cannot be too much

impressed by these numbers.

The age given by the decay of uranium is determined from the

relative abundance of uranium, that is, the uranium per gram of

hydrogen in the interstellar medium as measured in meteorites

or in samples of the earth's crust. The assumption is made that

uranium production is such that its abundance is increasing lin-

early with time, which is the sort of thing which goes with

Salpeter's model. In addition there was some prompt production

of uranium in connection with the halo population for reasons

which I mentioned before. In one case I assume 25 percent

prompt; in the other 50 percent prompt. More recently I have

calculated an age with the assumption that the uranium is

produced by the halo population with distribution curves of the
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kind shown in Figure 6. These three distribution curves give

9, 7.7 and 7.2 billion years for the first origin of uranium.

- \
\

FIGURE 6. Uranium production rate (arbitrary units).

T represents the present age of the galaxy.

I have avoided using the ratio of uranium to thorium

abundances since they have different chemistries and long half

lives. I do not believe anything can be concluded from thorium

abundances. I have used only U-235 and U-238 abundances.
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Since U-235 has a relatively short lifetime, this age deter-

mination is very insensitive to what we assume about the initial

abundances. The initial formation ratio of U-235 to U-238 does

not matter. Furthermore, if the uranium is made with an R

process, then the formation ratio of U-235 to U-238 ought _o

be a fixed ratio independent of the local conditions in the

region in which the sun was formed in the galaxy.

It is possible that these time distribution curves for the

formation of uranium are incorrect. For example, if shortly

before the solar system formed a supernova occurred nearby,

then some of the uranium in the sun could have been produced at

that particular time. This could have biased the U-235, U-238

ratio. Because of the short half-life of U-235, a significant

portion of it, found in the solar system, might have been formed

that way. On the other hand U-238 has a longer lifetime and

may have accumulated to a much greater extent from the past.

Therefore its abundance is less sensitive to recent events in

the solar neighborhood. In this way the details of the for-

mation curve can play an important role in determining the age

that we get. It should be noted though that at the time of

formation of the solar system the U235/U 238 ratio was 0.34.

Thus a very significant faction of uranium must be assumed
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to have been formed just prior to this solar system if one is

to conclude that this is the explanation for this short time

scale.

The uranium ages I have given differ quite a bit from

those of Hoyle and Fowler. They make a quite different assump-

tion about the distribution in time of the formation of uranium.

Hoyle and Fowler assume that uranium is produced in a kind of

supernova which cannot occur until some 4 or 5 billion years

after initial stellar condensation. So there is about a 4 or 5

billion year waiting time. They also assumed that the fractional

composition of uranium relative to hydrogen varies at a rate

proportional to the amount of hydrogen gas present and, as a

consequence, that the uranium abundance is an increasing

function of time as shown in curve (a) Figure 7. That was a

mistake. They should have taken the uranium composition relative

to the total amount of hydrogen initially present. That

gives the linearly increasing rate in curve (b) Figure 7.

However, the reason for the discrepancy is the 4-5 billion year

delay introduced initially.

My ages also differ from those of Cameron. In Cameron's

model the primary (light) elements are assumed to be formed at

the same rate as star formation which is taken to be a

decreasing exponential. The secondary elements are formed

at a rate dependent on the build up of the primary elements.
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For uranium, the production rate is complicated and rather

different in terms of history from that of Fowler and Hoyle.

But the conclusions about the age of the elements are

essentially the same as theirs.

TIFF-

FIGURE 7. Uranium abundance as a function of time.

Now What about the problem of the higher temperatures in

the past? I find that if we assume that the black body radiation

characteristics of the earth have not changed, a certain change

in the solar temperature would lead to a corresponding change

in the earth's temperature. If we go back some 4 to 5 billion

years, the temperature would rise from about 300 ° K up to

about the boiling point of water.

This is not corrected for solar evolution and the motion

of the sun along the main sequence. This would tend to pull
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the temperature down but not by a great deal. It might come

down some i0 ° K, so that it would be 80° K or 90° K, still

approaching the boiling point of water.

The total factor which the luminosity changes due to

changing G is about two. This is assuming a linear extrapo-

lation. We take

_/G = 3 x i0 -II /year.
(5)

The luminosity changes by a factor 7-8 times as great.

that in 4 billion years the luminosity change would be

So

_ = (4 x 109 ) (3 x i0 -II) ( 7 ) _ 1 (6)

The possibility of the earth's temperature approaching the

boiling point of water 4 billion years ago is contrary to the

argument of Urey that the temperature of the earth has been

never more than 300 ° K. This argument is based on the presence

of certain volatile elements still in the earth's crust. I

am not terribly convinced by this argument. Only a small part

of the earth at the surface has been exposed to erosion. In

any case, suppose the volatiles did come out. Where would

they go? Only back into the crust eventually.

An important influence on the effect of a change in the

sun's luminosity on the temperature of the earth is the water
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vapor in the atmosphere. The effects of increased water vapor

work in two directions at once. One is the increased greenhouse

effect leading to a rise in the temperature. The other is increased

albedo and better heat transfer to high latitudes, leading to a

decrease in the temperature. I think I would argue this way.

With increased radiation the first thing I would expect would

be that the surface temperature would go up somewhat, leading

to a higher vapor pressure, and an increased greenhouse effect,

but, on the other hand, also increased cloudiness.

However, there is an argument that there must be very large

amounts of _ater vapor in the atmosphere before the cloud pattern

changes very much. I will make the argument, but I am not sure it

is right. It is that in the convection of the atmosphere there

are both upgoing air and downgoing air currents. These occupy

roughly equal areas, so that one would expect roughly 50 percent

cloud cover over a wide range of water vapor content.

It is possible that with an increase of radiation from the

at

sun, the difference in the radiation absorbed/the equator and

the pole would increase. This could result in more circulation

and increased cloud cover where it is most effective. If the

atmosphere approached something like 80 or 90 percent water vapo_

then the circulation pattern would change in a rather interesting
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way. There would no longer be the convection cells of the kind

that we are familiar with. The water vapor would rise in the

equatorial regions and fall as rain in the polar regions. Then

there could be nearly i00 percent cloud cover. This is how the

ice ages were once explained, by increased cloudiness and by

increased rainfall.

These possible changes in the surface temperature of the

earth might be significant for biological considerations. If

the earth was too hot in the past, living organisms would have

been uncomfortable. This is the only real sensitive test of past

temperatures that I can think of.

But in the absence of further evidence, I think the moral

is that the atmosphere is complicated. One can not make any

very firm predictions concerning the effect of an increased

luminosity of the sun in the past on surface temperature. We

cannot be sure how much the surface temperature would have changed.

In the case of the moon things are certainly much more clear.

We can predict unambiguously a higher surface temperature for the

o

moon in the past, approaching some 70 to i00 C some 4½ billion

years ago.

Another interesting geophysical effect to be expected,

associated with a decreasing gravitational "constant," is a
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steadily expanding earth. The earth is substantially compressed

by the gravitational force. As this force gets weaker with

time the earth expands. With a rate of decrease of the gravi-

tational constant of 3 x i0 -II per year, the earth would be

expected to expand in circumference by approximately 150 kilo-

meters per billion years. This expansion rate is based on what

one knows about the present amount of the compression of the

earth. The corresponding number for the moon is of the order of

1 kilometer change in the moon's circumference, per billion years.

What is the evidence on the expansion of the earth? The

traditional explanation for mountain formation, the classical

one, is a contracting earth with the crust buckling and producing

mountains. This classic explanation for mountain formation has

fallen somewhat into disfavor in recent years_ Many geophysi-

cists no longer take this explanation seriously.

There are some striking indications of something like an

expansion in the earth, but again the problem is one of the

ambiguity of the evidence. Figure 8 shows an old classic problem

faced by the geologists. This is a picture due to Carey, who has

been able to explain many geological features as resulting from

a large expansion of the earth. According to Carey, as the earth

expanded, a great big crack opened up along what is now the
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FIGURE 8. Map showing the coast lines of the Americas and

Europe-Africa in relation to the Mid-Atlantic ridge (from

W. S. Carey).

western coast of Africa and the continents of Africa and South

America pulled apart. Figure 9 shows the rather good fit between

the boundaries of these two continents. The outline shown is the

continental margin, that is, the continental shelf boundary.

Among other geologists who have adopted variations of this

explanation are W. Egyed, T. S. Wilson, and Bruce C. Heezen.

Wilson and Heezen have suggested that earth expansion may be an
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explanation for the global system of rift valleys, such as the

medial crack system along the Mid-Atlantic ridge.

Unfortunately, an expanding earth is not the only possible

explanation for the geological features pointed out by Carey.

The old explanation of A. Wegener (1915) and A. L. DuToit (1937)

involving continental drift is a possibility. This idea was

placed on a more reasonable basis when it was recognized that

a convective mantle could result in motion of continental masses.

In addition to the geological features mentioned above, there

is other evidence for the relative motions of continents.

Recent paleomagnetic data, much of it taken and studied by S. K.

Runcorn, has given evidence for continental drift (which would

not require an expanding earth but probably would require a

convective mantle).

One might argue that the coincidence between coast lines

does not mean anything. With all the many complicated coasts

one might always find some coast lines which would fit together.

However, a compelling argument for a common origin of these two

coastlines is the existence of the mid-Atlantic ridge 1 to 2

kilometers high shown in Figure 8. This mid-Atlantic ridge

is quite accurately halfway in between the continental coasts.
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FIGURE 9. Map showing the fit between South America and

Africa at the 2000 mile isobath along one slope below the

edge of the continental shield (from W. S. Carey).

It rather accurately represents a medial ridge down the Atlantic

Ocean basin.

As mentioned above, this ridge has along much of its

length a medial crack which is quite large,

-39a-

some kilometers wide.



This is as if the earth were really pulling apart there, thus

forming the crack. It is not a continuous crack along the whole

length of the ridge, but it does seem to occupy a large part

of the total length.

This feature of a mid-ocean ridge is not limited to the

Atlantic. It exists in all the oceans. It is shown in Figure

8 continuing around Africa. It goes into the Indian Ocean, and

extends around into the Pacific. In fact, there is a connection

with the Gulf of California. In the Gulf of California there is

a crack running north and south which has gotten into the land.

Another interesting thing is that the Atlantic ridge seems

to run right through Greenland, The crack is on dry land there.

You can walk around and look at it. The land is up quite high.

All the igneous activities that one sees in Greenland seem to

be associated with the fact that it is part of the mid-Atlantic

ridge and that this crack runs through it.

This is a rather compelling argument, I think, that these

continents were at some time closer together and that they were

associated in some way. The explanations for this are where the

disagreements come. Carey suggests that the whole earth has
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expanded an enormous amount, much more than I would have liked

to have with gravity getting weaker. We cannot get very much

expansion from our small rate of decrease of gravity.

It is unlikely that changes in the structure of matter

toward the center of the earth would lead to a disproportionately

large radius change. The usual assumption is that the inner core

is a solid form of iron and nickel, and the outer core is liquid.

A change in G could change the phase boundary and cause the

region of melting to shift. But I do not expect anything very

discontinuous to happen. Even if the inner core were a solid phase

of the same composition as the outer core, I do not think there

could be an abrupt change in radius. The effect of an expansion

is always one of absorbing heat and shoving the reaction which

provides the expansion back in the direction to turn it off. It

is not something for which an instability develops. This enormous

required expansion is one of the very serious problems connected

with Carey's ideas.

Another direct observational bit of evidence against Carey's

ideas is the fact that if the earth were expanding at the rate

at which Carey says, it would lead to some very noticeable

effects in the motion of the moon relative to the earth's rota-

tion. The day would be slowing down at a rate decidedly greater
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than has been observed over historical times.

The explanation based on mantle convection for the apparent

drift of continents is largely due to Vening Meinesz. According

to Vening Meinesz, the early convective cooling of the earth

was with a simple system of convective cells which became more

numerous as the core of the earth developed. In this model,

the mantle of the earth, although one would think that nor-

mally it is solid, is an almost viscous liquid continually

convecting. As stated above, the convection has caused con-

tinents to pull apart, forming such oceans as the Atlantic.

This is assumed to have happened in the recent past. Of

the order of i00 to 200 million years ago they were joined

together. They have separated since then.

As was mentioned brieflys the idea that the continents are

moving around, because they are floating on the mantle, goes

back to Wegner. He explained the Ice Ages by having conti-

nents drift up to the North Pole where they have an Ice Age

and then drift away again. He would have had the continents

drifting around like bits of wood in a quiet pond of water.

There is a number of interesting things one can say about

the effects of convection in the mantle, if it exists. If there

is an uprising cell along the mid-ocean ridge we would expect a

higher heat flow. Well, one does see a higher heat flow.Also, if
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material is rising here we might expect that this ocean bottom

is rather recent. There would not be much in the way of sediment

on it. Well, there is not much in the way of sediment. This is a

rather surprising thing about all the oceans. There is very little

in the way of sediments on the bottom. Using present sedimentation

rates, one would expect that there would be considerably more

than there actually is.

As mentioned above, the recent measurements on paleomagnetism

rather strongly indicate continental drift is going on. But if

there is continental drift going on associated with mantle con-

vection, I think it would be very difficult to say anything

about a general expansion. Effects of a general expansion are too

small compared to these much larger effects, and they are easily

masked.

The convection itself might be associated with a decreasing

gravitational constant. This is because of the fact that as you

take the pressure off the earth in the interior, the melting point

decreases. As the melting point gets closer and closer to the

temperature that exists there is either local melting or at least

the viscosity falls to the point where convection starts. So there

may be actually a connection between convection and a weakening

gravitational constant.
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A third explanation which has been given for continental

drift is that in the early days of the formation of the earth

there was a rather large amount of convection in the interior of

the earth. This was either in the form of a solid mantle or else

a molten earth associated with the heat of the initial radio_
_P

activity and the heat energy associated with the compaction, that

is, the gravitational energy. The convection in the original earth

produced the large convection cells that determined the land mass

distribution. Then these convection cells disappeared. So that

the land mass distribution that we have now is a fossil remnant

of early convection cells. This is an explanation which is favored

in some quarters.

If it is true that this convection is not going on now, then

there are quite reasonable explanations for the oceans' system

of cracks. They might be due to a general expansion connected

with weakening gravity. But if the convection is going on now, I

think the direct effects of general expansion in producing such

features are minor.

In connection with the moon's expansion, there is a

similar situation except that there is no evidence for convection

in the case of the moon. If there were convection, faulting of the

surface would be expected. One would expect to find craters sliced

-44-



in two, one half sliding with respect to the other half. These

do not seem to appear. It is clear that the moon might actually be

a better place for looking for expansion effects even though the

expected expansion is much smaller. The effects of expansion

would be expected to appear in the form of surface cracks or

magma flows. Magma flows might be expected to result from an

expansion of the interior, the only part requiring expansion.

This could result in the internal low melting point components

forcing their way out through cracks in a rigid crust.

(See U.S. Air Force Lunar Atlas: Plate D3-a, Archimedes.)

FIGURE i0. The moon's crust showing characteristic maria and craters

Figure i0 shows the moon's surface with its characteristic

maria. We are all familiar with these large dark areas on the

moon which could be lava flows. It has been suggested by T.Gold

that these are seas of dust. I doubt the validity of the "seas

of dust" explanation. There are a number of craters flooded

inside and out to the same level, as nearly as one can tell from

the shadow measurements of height. It is very difficult for me to
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conceive how dust would establish hydrostatic equilibrium, filling

up inside the crater to the correct height. This seems to suggest

more directly a fluid, connected through surface fissures to a

common sub-surface magma pool.

(See U.S. Air Force Lunar Atlas: Plate C2-b)

FIGURE ii. Photograph of moon's surface showing a gash.

Figure ii shows another feature which was described at one

time as a gash caused by a meteorite fragment. I think that one

can soon convince oneself that a large high velocity projectile

would not make a gash like this, but would produce an intense

shock wave that could result in a crater-like formation. I think

a much more reasonable explanation for this particular formation

is a crack in the surface, a fissure filled by magma from the

interior.

Another effect of gravity getting weaker with time that

would be expected is a gradual slowing of the moon in its orbit

about the earth. This should lead to a discrepancy in the lunar

position computed on the basis of constant G. Figure 12 shows
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FIGURE 12.The discrepancy f (T) of the moon's longitude based on

occultations

the lunar discrepancy curve as observed from telescope observations

for the last 200 years. The error in the moon's position, that is,

the observed longitude minus computed longitude, is given as a

function of time as determined by the earth's rotation rate. There

are at least two effects contributing to this error. One is an

irregular fluctuation effect, usually assumed to be due to an

/

irregularity in the earth's rotation rate.(See Lecture 12 for

an alternative explanation.) The other is a quadratic effect

indicated by the parabolic shape of this curve. The quadratic

effect is associated, in part at least, with the tidal inter-

actions between the earth and the moon which slow the earth's

rotation down and cause the moon to move out to a bigger radius
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with a longer period. One can eliminate the fluctuation

effect due to the earth's erratic rotation and simply look

at the tidal slowing down of the moon by combining the moon's

observations with observations of the sun's and Mercury's positions.

o

O

Y

i | !

FIGURE 13. Weighted discrepancy differences: o for the sun, + for

Mercury (prior to 1740 these depend on the extrapolated longitude

of the sun). (From MacDonald and Munk)

Figure 13 shows how this combined data looks. The curve is

a parabolic arc without fluctuations, the irregularities in the

earth's rotation having been taken out. From this curve one can

determine the rate at which the moon has been slowing as a result

of the effect of tidal interactions only. The tidaleffects can .........

be computed direetly..from the observations.

This Slowing of the moon's motion, due to a tidal interaction
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with the earth, implies also a slowing of the earth's rotation.

This is not the only tidal interaction with the earth's rotation

which requires notice. There are other tidal effects one needs

besides this. Two other tidal interactions affect the earth's

rotation rate. In addition to the tidal coupling of the moon

with the earth, the tides raised on the earth by the sun affect

the earth's rotation. Also there is the atmospheric tidal couple.

As mentioned above, from telescopic observations one can obtain

the tidal slowing of the moon's motion and the resulting slowing

of the earth's rotation rate. Assuming that the tidal slowing

of the earth's rotation is proportional to the tidal driving

force, the tidal slowing of the earth due to the sun can be

computed. Also the measured atmospheric pressure fluctuations

allow the atmospheric tidal speeding of the earth's rotation

rate to be computed. Combining all these effects, we can compute

the expected slowing down of the earth's rotation rate from all

the tidal interactions.

There is another expected effect on the earth's rotation

rate connected with the fluctuation of sea level. Figure 14,

taken from Fairbridge (6), shows the kind of data that one has

(6) R. W. Fairbridge, Physics and Chemistry of the Earth,

Vol. 4, Ahrens, Press, etal ed., p. 158.
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FIGURE 14. Historical variation in sea level (from R. W.

Fa irbridge) .

on sea level fluctuation which would have affected the moment

of inertia of the earth. The sea level in the past is determined

by radiocarbon dating of coastal shells. The old eclipse obser-

vations on the earth's rotation rate are primarily in the period

when the sea level was most rapidly changing. So we should

take into account the effects of the variations of sea level

occurring over that period of time.

If sea level should rise by i cm asaresult of arctic or

anarctic ice melting, the earth would be expected to rotate
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more slowly by a part in 109 , after including the effect of

elastic distortion of the earth, but assuming no isostatic adjust-

ment of the crust. It is probably more reasonable to assume a

substantial isostatic compensation of the shape of the earth,

and to assume that the effect on the earth's rotation rate is

proportional to the change in sea level, proportional with a

proportionality constant to be determined.

FIGURE 15.

of _/T _

e4._

Fotheringham's (1920) summary of consistent values

and _/Tz for various ancient solar eclipses.
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Figure 15 shows the kind of data that one has to use in

order to obtain an observational value for the secular

acceleration of the earth's rotation and the moon's motion.

The data must be taken over long periods of time because of

the irregularities in the earth's rotation rate. This means

going back to the classical eclipse observation of the

Babylonians and the Greeks. From any one eclipse observa-

tion, such as the one described by Hipparchus, one obtains

a linear relation between the secular accleration of the

sun and that of the moon. The secular acceleration of the

sun is a measure of the acceleration of the earth's rotation

rate. (Two lines, representing upper and lower limits, are

shown.) These are the curves shown in Figure 15. While

the secular acceleration of the sun is a measure of the

earth's rotational acceleration, the moon's accelera-

tion is due to both effects, and acceleration of
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of the moon and a slowing of the clock given by the earth's

rotation.

In the framework of this analysis, a gradual slowing of

the moon's motion and planetary motion, due to a gradual weak-

ening of the gravitational interaction, would appear as an un-

explained _11_] _ne_dinq of the earth's rotation rate after

making allowances _or all known effects on the earth's rotation.

By combining modern telescope observations and the information

obtained from these eclipse observations, one can get a secular

acceleration for the sun and hence an effective average acceleration

of the earth's rotation. Subtracting from this the three tidal

accelerations determined from the telescope observation and

barometric pressure fluctuation, yields a residual discrepancy

which is just about the right size to be a consequence of gravity

getting weaker. It is found that the four best eclipse observa-

tions considered by Fotheringham, the only on, really worth

discussing, are made more consistent if an allowance for sea

level fluctuations is included. The resulting derived proportion_

ality between sea level variation and the earth's rotation rate

allows correction for sea level fluctuations to be included. After

including this correction the earth's rotation rate exhibits an

even larger residual acceleration.
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Unfortunately, there is one thing that we can't really be

sure about, and that is what the earth's core has been doing. The

earth's core could have coupled with the mantle over a very long

period of time, transferring momentum from the core to the rest

of the earth. One could account for the discrepancy this way.

This possibility seems to be the chief unknown that exists in

the data and theory.

I would like to mention one more place where it seems to me

there might be a quite interesting effect. This is an effect

connected with Jupiter's interior.

There may be a real problem of accounting for the magnetic

field of Jupiter. The relaxation time for an electrical current

in the interior of Jupiter to die out is sufficiently short that

Jupiter should not have a primordial magnetic field left over. One

must account for Jupiter's magnetic field in terms of a mechanism

presently stirring up the interior in a magneto-hydrodynamic

way generating this magnetic field. The energy required to do

this appears to be quite large. This is because the deep interior

of Jupiter is, as far as one can tell, hydrogen in a degenerate

form. It has a very good thermal conductivity. Therefore, it is

quite difficult to drive mass convective currents with heat flow.

While convection in the outer part may be possible, this part is
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probably not a good electrical conductor.

It is possible that there might be a non-degenerate solid

core of heavy elements a few times the earth's mass. This is the

suggestion of DeMarcus. Even with all the radioactivity that

might be in such a core it is quite difficult to get a large

enough heat flow to produce temperature gradients sufficient for

convection in the outer part of the metallic hydrogen phase.

It is conceivable that the field is produced in an iron core

in the inner core. But this does not fit what we know about

Jupiter's magnetic field. The radio measurements suggest that

the field is nothing like a centered dipole magnetic field. It

appears to be way off to one side, and rather localized. Hence

it is not likely that the magnetic field is produced at the center.

A varying gravitational constant provides a possible mechanism

for driving currents outside the core. This depends on the exist-

ence of a phase change going from degenerate to non-degenerate

hydrogen at some distance from the center, 0.6 or 0.7 of the

radius of Jupiter. If G. changes, the radius at which the phase

change occurs should change as well. The radius of the phase dis-

continuity and the resulting discontinuity in density should move

steadily inward as gravitation weakens.

This density change leads to a difference in the rotation
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rate of the inner part of Jupiter relative to the outer part.

The moment of inertia of the material involved in the phase

change does not scale properly to maintain rigid body rotation.

Conservation of momentum leads to the inner part rotating more

rapidly than the outer part.

How much energyis available from this? From the G variation

rate we have been discussing I estimate that it might be 20 to I00

times as much energy as is available from radioactivity. This

energy would be made available by some mechanism of damping out

the differential rotation through magnetic coupling between the

two conducting shells. Furthermore, this mechanism provides a

shearing motion for the production of a magnetic field.

Magnetic field lines cutting through the radius of phase

change would be stretched out, wound like yarn on a ball, until

magnetic pressure and tension effects become important. The re-

sulting magnetic forces could induce turbulence in the boundary

region.

It is quite conceivable that if anything like this should

occur, it could be an important mechanism for stirring up the

interior of Jupiter by producing a differential rotation of the

interior.
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Schematic diagram of possible magnetic field genera-

FIGURE 16. tion in Jupiter resulting from differential rotation.

I cannot give a detailed mechanism for the production of a

magnetic field in this manner. It is difficult to understand how

a magnetic field is sustained in any celestial body. But I could

conceive of a situation where this shear motion could be coupled

to a non-axially symmetric magnetic field. This might involve

convective eddies and turbulent eddies, in the shear region

(Figure 16).

It is interesting and may be significant that Jupiter does

exhibit various rotation rates. The observable features seem to

rotate at various rates depending upon latitudes. Also the
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magnetic field has its own characteristic well-defined rotation

rate, about the same as high latitude visual features.

The effects I have discussed in this lecture do not demon-

strate the existence of a time varying gravitational constant, but

I have not yet been able to find an effect for which the observa-

tions rule out such a variation. Rather, in many cases, a varying

G provides a possible explanation for a little understood feature

of astronomy or geophysics.
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Preface _ _O_

These notes were taken from a series of seminars on

Gravitation and Relativity presented at the Institute for

Space Studies, NASA Goddard Space Flight Center during the

academic year 1961-1962. Professor R. H. Dicke of Prince-

ton University organized the series as an introduction to

the subject for non-experts, emphasizing the observable

implications of the theory and the potentlal contribution

of space sciences may make towards a better understanding

of general relativity.

The approach has been conceptual rather than formal.

For this reason, this record does not include a complete

mathematical development of the subject, but, we hope,

does contain sufficient mathematics to elaborate on the

conceptual discussions.

The notes were prepared with a certain amount of

editing from a transcript made from recordings of the lec-

tures. The speakers have not had the opportunity to read

and coorect the final manuscript. Hence, we accept res-

ponsibility for errors and omissions.

H. Y. Chiu

W. F. Hoffmann



 68- 143 v 6

RELATIVITY PRINCIPLES AND THE ROLE OF COORDINATES IN PHYSICS

It is generally agreed that two principles play a role in

the formulation of the general theory of relativity. One of

these, the principle of equivalence, is usually accepted with-

out question The other, the principle of general relativity,

or, as it is sometimes called, the principle of general cova-

riance, on the other hand has served as a topic of heated dis-

cussion ever since it was first put forward by Einstein in

1915 Kretchmann (I) was the first to raise objections to the

principle and more recently the question has again been dis-

cussed quite forcibly by Fock in his recent book. (2)

The principle of general relativity is essentially the

statement of certain invariance properties of a class of physical

theories and is therefore of interest to the theoretical

physicist for several reasons Perhaps most important of all,

an invariance principle associated with a group of transfor-

mations usually implies a limitation on the possible types of

theories that one can formulate which satisfy it. Therefore

it will be of interest to examine the principle and to find

limitations which it imposes on the possible forms for the

(3)
equations of general relativity. In 1918, Noether showed

that there is a very close relation between the invariance

properties of a given theory and the conservation laws in
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the theory. For a theory invariant with respect to a group of

transformations whose elements are determined by a finite number

of parameters, that is, a Lie group, this relation is quite

simple; for every parameter there is an associated object which

is conserved. If the invariance is with respect to a group

whose elements are determine4 by a number of arbitrary space-

time functions such as the gauge group of electrodynamics or,

as we shall presently see, the coordinate group of general

relativity, the relationship is not so clear. As a conse-

quence, there has been a great deal of discussion in the past

few years over the role of the conservation laws associated

with general relativity, namely, the conservation of energy

and momentum. Therefore a better understanding of the in-

variance properties of the theory may lead us to a better

understanding of the meaning of the associated conservatJon

laws. Finally, as we shall see, the principle of General

Relativity is intimately related to the coordinatization of

the underlying space-time manifold and hence may shed some

light on the role which coordinates and the process of coor-

dinatizing a manifold play in physics.

Before we begin our discussion of the principle of

general relativity it will prove helpful to discuss briefly

a more familiar principle, that of special relativity. Even
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here things are not as straightforward as some books would make

us believe. The basic intuitive idea is simple enough; we

should not be able to distinguish between the totality of frames

of reference moving uniformly and rectilinearly with respect to

each other by any physical means. The difficulty with this defi-

nition lies in the apparen_y innocent phrase "by any physical

means". Almost any physical system, such as a box of gas or

an electron, does in fact allow us to single out a particular

reference frame among the totality of all those moving uniformly

with respect to each other, namely the frame in which it is at

rest. Let us try to be more explicit about the term "physical

means".

Imagine two identically constructed systems, such as two

electrons, two identical boxes of gas, etc., moving uniformly

with respect to each other. Call them systems A and B respec-

tively We now imagine two observers or frames of reference,

A and B, such that the system A is at rest in frame A and

system B is at rest in frame B. Then the principle of special

relativity requires that, if the initial state of system a_ss

seen b___ observer A is the same as the state of system B a__s

seen b__y observer B, then the final state of system A, as seen

by observer A, will be the same as the final state of system

B, as seen by observer B. Note that observer A never looks at
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system B and vice versa; they merely compare results of what they

see their own systems doing. If observer A were able to make

measurements on system B he would, in general, obtain entirely

different results from those obtained by observer B from system

B. It is in the sense used above that we are to interpret the

f_L,ulat_o .... _ specialterm "physical means" in our first ..... _ - _ ....

relativity principle. We can then rephrase our original state-

ment so as to read: there exists no physical system or state

of that system which will behave in different ways when place4

in one or another of a collection of frames of reference

moving uniformly with respect to each other.

There is another formulation of the principle which, at

first sight, appears to be fundamentally different from the

first. It asserts that the laws of physics can be put into

a form which remains unchanged when the various quantities

appearing therein are subjected to a Lorentz transformation.

In order to be able to refer to it readily we shall call this

the principle of Special Covariance. In the first formulation

there is no mention of how the various physical guantities

transform under Lorentz transformations; we did not even

mention Lorentz transformations. In fact, it is not always

clear that it is meaningful to talk about the Lorentz trans-

formation of a particular physical quantity.
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In order to understand the distinction between the two formu-

lations let us consider two different physical systems and the

laws associated with them. One of these systems will be the

electromagnetic field, the other a box of hydrogen gas. The

laws associated with the electromagnetic field are of course

....... _,- T_ey =n_1,, to all ronoeivable electromaQ-L-,a_w_ _ equations .... rr-I ..... _

netic fields: to the field of an electron at rest with respect

to an observer as well as one moving uniformly or even arbi-

trarily with respect to the observer. Furthermore, the way

in which the electromagnetic field is measured is independent

of the particular field being measured. If we want to know the

electric field at a point, we would hold a small test body

there and measure the force on it. Another observer, moving

uniformly with respect to the first, would measure the electric

field he sees in exactly the same way. It is therefore a

meaningful question to ask for the relation between the two

measurements of the same field. It is a relation which in

principle could be verified by observation. Let us now see

how our two formulations of the principle of Special Relativity

apply to the electromagnetic field and Maxwell's equations.

For our two systems in the first formulation we could

take an electron at rest with respect to A and another at rest

with respect to B. All that is required is that the field
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measured by observer A due to electron A be the same as the field

measured by observer B due to electron B. However, since both

observers are able to measure any and all electromagnetic fields

we could interchange the roles of the electrons. A's system

would then be an electron at rest with respect to observer B,

while B's system would be an electron at rest with respect to

observer A. And again, the field which A measures should be

the same as that which B measures.

any system of charges and fields.

A similar duality holds for

Since a physical law is a

statement about the behavior of a collection of physical sys-

tems, all of which possess some common properties (in fact,

the physical law is just a statement of these common properties)

and since all of the electromagnetic systems which A observes

are identical with the totality of electromagnetic systems

which B observes it follows that the physical laws governing

these systems as formulated by B in terms of the fields he

measures in order that the principle of special relativity

holds. Furthermore, since it is meaningful to talk about the

relation between the values which A would measure for a

particular field and those which B would measure for the same

field we can talk about the transformation of the laws which

A has formulated into the laws which B has formulated. Since

the two sets of laws have the same form, the transformation
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between the two fields must be such as to preserve this form. In

this way we are led to the statement of special covariance as we

formulated it above. As we well know, it is just the Lorentz

transformations which maintain the form of Maxwell's equations

and not the Galilean transformations although our first formu-

lation was equally applicable to both types of transformations.

Let me summarize what I have said concerning the electro-

magnetic field. Observer A looks at the totality of all

electromagnetic fields and finds that they satisfy a set of

laws which can be written in the form

and

_V .U
FA, v = - ]A (i)

FAuv,p = 0 (2)

where FAUV is the usual antisymmetric matrix constructed from

_A and _A' the electric and magnetic fields respectively

measured by A. jA u is a column matrix constructed from the

current and charge densities measured by A. I call these

quantities matrices since at this point I wish to specify only

their algebraic and not their transformation properties.

Similarly, observer B looks at the totality of all electro-

magnetic fields and finds that they satisfy a set of laws

which, if the principle of Special Relativity is to hold,
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must perforce have the same form as eqs. (i) and (2) except that

the subscript A is replaced by subscript B. Now, since the col-

lection of fields which A measures to verify equations (i) and

(2) is the same as the collection of fields which B uses there

must exist a relation between FAUV and FBUV as well as between

the spatial and temporal measurements of A and B such that,

when we substitute into equations (i) and (2) for the quantities

measured by A in terms of the quantities measured by B we obtain

,(4)
the correct equations satisfied by the B quantities. Poincare

and Einstein (5) derived the correct transformation equations

relating the A and B quantities. For spatial and temporal

measurements they are

XBU = _uvxA v + b _

U
where the b u are a set of four numbers and

v

satisfying the conditions

(3)

is a matrix

where D is the Minkowski metric in Cartesian coordinates and
uv

is given by

-i 0 0 0 1

-i 0 0

0 -i 0

0 0 0 ÷i

(5)

The fields are then related by

FBUV = _Up_V FAPS (6)
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Let us emphasize again that the transformation equations (3) and

(6), while derived from the condition that the Maxwell equations

(i) and (2) maintain their form when subjected to these transfor-

mations, are, in principle at least, subject to direct experimen-

tal verification. We see thus that electromagnetic fields satisfy

both statements of the principle of special r_ativity.

Let us now consider the case in which the systems to be

examined are boxes of gas. Observer A looks at all possible

states of the gas for which he can measure thermodynamic quan-

tities such as temperature, pressure, entropy, etc., and deduces

from his measurements that the first and second laws of thermo-

dynamics apply to these states of the gas. Similarly B looks at

his boxes of gas and, if the principle of special relativity

holds, must find that the thermodynamic quantities he measures

must also satisfy the two laws of thermodynamics in exactly the

same form as found by A.

There is, however, an essential difference between the

electrodynamic and thermodynamic cases. Thermodynamic quanti-

ties only have meaning in the rest frame of the system being

observed. Thus, any measurement of the temperature of a gas

streaming uniformly past the observer or, what is the same

thing, for the observer to measure the temperature while

holding a thermometer in his hand and running past the gas
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will, in general, depend on the kind of thermometer employed, how

it is orientated with respect to the direction of motion, etc.

This is not to say that an observer could not infer from mea-

surements on a moving system what its rest temperature is. The

point is that he must interpret these measurements in terms of

the rest temperature of the system since this quantity alone

depends on thermodynamic state of the system. It is therefore

not physically meaningful to talk about the transformation

properties of thermodynamic quantities since such transformations

could never, even in principle, be verified by observation.

Thus the requirement of special covariance, as applied to

thermodynamic systems, is without physical content. While

it is possible to define transformation laws for thermodynamic

quantities so that the laws of thermodynamics retain their

form when subjected to these transformations and so thereby

formally conform to the requirement of special covariance,

such a procedure is without physical content. Formulating

thermodynamics in a special covariant form was actually

carried out by Planck (6) and Einstein (7) and later elaborated

upon by Tolman (8) .

While the formulation of thermodynamics in the sense

outlined above is without physical content I should point out

that the relativistic treatment of an ideal gas is another
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matter altogether. Here we do not ask about the transformation

properties of the various thermodynamic quantities; it is assumed

that we always work in the rest frame of the gas. However we

ask for the modifications in the equations of state for the gas

when the molecules or atoms comprising it are moving at relati-

vistic ve!ocities_ J{_ttner (9) was the first to work out the

case for an ideal, relativistic gas. He proceded by calculating

the partition function, Z, given by

Z = e-H/kTdxl°..dX2N (7)

where H is the energy of the system and is a function of the

2N variables x I ..... X2N. This is the usual expression for the

partition function as found in all books on statistical mechanics.

1 2
Now however, instead of taking H to be _ _Pi for an ideal gas,

1

J_ttner used the relativistic expression

2 4 2 2 _
H = _ (m O c + c _i ) (8)

i

Thermodynamical quantities such as pressure and internal energy

are derived in the usual manner by taking appropriate derivatives

of (In Z)/kT. Notice that there is no attempt to modify the

usual non-relativistic formulation of statistical mechanics.

It may conceivably require modification when we deal, with

systems whose components are moving with relativistic velocities

but the principle of special relativity offers us no clue as to

the nature of the modification. The only thing it suggests is
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that we replace the non-relativistic expression for H by the

relativistic one given in eq. (8).

What morals can we deduce concerning the principle of special

relativity from our considerations above? Above all we must con-

clude that it is not so much a statement about the various

physical systems which can exist in the space-time manifold.

It says very little about physical systems and the form of the

laws which are to describe them. This is especially true for

the case of systems which uniquely define a rest frame such as

our box of gas did. There our first formulation told us nothing

and our second formulation was satisfied in a trivial, non-

physical way by merely requiring that the various thermody-

namic quantities transform in a manner so as to preserve the

form of the laws of thermodynamics. Even for systems exempli-

fied by the electromagnetic field where there are no restrictions

on which fields can be measured by which observers, the principle

tells us very little unless we add the additional requirement

that the laws should be local laws, that is, they should be

capable of verification solely by means of measurements made in

the immediate neighborhood of a point, and that the transfor-

mation laws between the physical quantities appearing in these

laws should also be local in the same sense. If we further

restrict our systems by requiring that the transformation laws

between the quantities appearing therein should be linear and
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homogeneous, i.e., the quantities should transform as tensors, or

tensor densities, spinors, etc., then we very seriously restrict

the possible types of systems and physical laws which can occur

in nature.

We will conclude this discussion of special relativity with

a _eformulation i** _metrical terms. We note _ _, as

a consequence of the axiom that the velocity of light is inde-

pendent of the motion of the source we can conclude that, at

every point of the space-time manifold, there is an invariant

geometrical object, the light cone. Such an object would exist

in a metrical geometry and would consist of the locus of all

points in the neighborhood of a given point which are at light-

like distances with respect to it. Thus, if x_ are the coordi-

nates of the point in question, then all other points (xU + dx u)

on the light cone originating from x _ satisfy

ds 2 = gUv(x)dxUdxV = 0 (9)

where gUy(x) is the metric at the point x_. The principle of

special relativity then asserts that the space-time geometry

is homogeneous and isotropic. Hence there exists a ten-parameter

group of motions which leaves the value of the metric unchanged

in the sense described in the chapter on Riemannian geometry.

As a consequence we can conclude that the geometry is a flat

geometry so Lhat the curvature tensor* satisfies

*See lecture II -13-



R : 0 (i0)
UvPO

everywhere. Hence we can always find a coordinate system in which

the metric is everywhere equal to the matrix _Uv' whose components

are given by eq. (5). The motions admitted by the geometry have,

in this coordinate system, the form given by equation (3). Phy-

sical objects are then represented by geometrical objects in this

Minkowskian geometry and physical laws are then statements of

relations which exist between the various geometrical objects.

Of particular interest for physics are the local geometrical ob-

jects which have linear, homogeneous transformation laws and the

local relations which one can construct between them. We should

emphasize that all of our statements are geometrical in nature

and hold independent of the particular coordinate system

actually employed.

Let me now go on to the General Theory of Relativity. As I

mentioned in the beginning of this talk, there are still many

disparate views on the subject. Fock has gone so far as to

proclaim that "As for the 'general Principle of Relativity,'

no such principle exists," and that there is less relativity in

"general relativity" than in special relativity. He bases his

contention on the fact that, while the flat space-time geometry

of Minkowski admits a ten-parameter group of motions whose group

is just the Lorentz group, a general Riemannian metric may have
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no motions at all associated with it. While this is true, it is

not at all pertinant since, in the general theory, the metric is

no longer taken to be given a priori as in the case of special

relativity but is to be considered a dynamical quantity along

with the other fields of nature. In fact, as we shall see, it

is just the requirement of general relativity that forces us to

treat the metric in this manner. Fock's objection is then equi-

valent to asserting that electrodynamics does not satisfy the

principle of special relativity because the field of an electron

depends upon the state of motion of the observer with respect

to the electron. In other words, a particular metric is no more

a law of nature in general relativity than is a particular elec-

tromagnetic field in special relativity.

As in special relativity, there are really two different

formulations of the principle of general relativity. One formu-

lation is analogous to our requirement of special covariance.

We shall call it the principle of general covariance. It states

that the laws of physics can be put into a form which remains

unchanged when the various quantities appearing therein are

subjected to an arbitrary coordinate transformation. And, like

the principle of special covariance, the principle of general

covariance is, by itself, devoid of physical content. Thus it

has been argued, as an objection to the principle, that any
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system of equations which are invariant in the sense defined by

special relativity, can be put into what appears to be a generally

covariant form by performing a coordinate transformation from a

Cartesian coordinate system where gu_ = Duv to an arbitrary

coordlnate system where now the metric will be some space-time

.... _^_ _ ................ _ ..... laws _,, replacing _U _"

guY' ordinary derivatives by covariant derivatives and appending

the equations (i0) for determining the metric. However, we have

introduced the general metric in a rather trivial way, which adds

no physical content to the theory. Adding physical content to

the theory would require generalizing the g_v to include non

flat metrics for which equation (I0) is not satisfied (that is,

those not obtainable from the _U _ by coordinate transform).

There is another example of this kind of trivial extension

(io)
of a theory which has a bearing on a proposal of Sakurai to

explain the strong couplings of strange particles. We know that

the Dirac theory of the electron is invariant with respect to

the group of gauge transformations of the first kind:

#., = e-ie,_.

_' = ei_ (ii)

where _ is a constant. As a consequence of Noether's theore_ (3)

.U
mentioned above, there is a curren_ 3 , associated with the

theory given by
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jU = -i_Uv(_*@, V

which satisfies the conservation law

.u
] ,u = 0

- '__*, v) (12)

(13)

for those spinor fields, _, which satisfy the Dirac equation.

We can, in complete analogy with the passage from Cartesian

to arbitrary coordinates, enlarge the group by ....... _ e be a

general space-time function. The spinor fields will still be

assumed to transform according to equation (ii). We find that

the transformed Lagrangian does not retain its form under this

transformation but rather adds a term of the form Jd4x_,uju.

We can compensate for this additional term by introducing a new

field A which transforms according to

A' = A + _,
u U U (14)

and adding a term, -_d4xAujU, to the Lagrangian. Then, in

analogy to equation (i0), we can require that A u satisfies the

equations

FUr m AU, v - Av, u = 0 (15)

These equations imply that A u can always be written in the form

AU : _'U

where _ is some space-time function.

(16J

Consequently,we can always

perform a gauge transformation leading to a new set of potentials

A' = 0 by taking for _ in equations (Ii) and (14) the function
U
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--_ just as, in the relativistic case, we could always find a coor-

dinate system in which guu = _UV for guv satisfying equation (I0).

Again we have formally enlarged the covariance group of the theory

without adding any new content to the theory. Furthermore, one

can show that there is no enlargement of the conservation laws

associated with the theory. This possibility of formally en-

larging the covariance group of a theory from a finite parameter

Lie group to one involving a number of arbitrary functions ap-

parently always exists. Because of this possibility we see that

there is not a one-to-one correspondence between the relativity

principle for a given class of theories and their corresponding

covariance group.

The question of the relation between the covariance group

and the relativity principle of a theory has been raised since

the early days of relativity theory. Kretchmann (I) proposed an

answer which I would like to discuss briefly since it is often

quoted in connection with this question and also because it is

related to the role of coor_nates in physics. Kretchmann said,

in effect: in order to find the relativity principle associated

with a given covariance group one must find out how far he can

restrict the covariance group by the imposition of non-covariant

restrictions on the objects appearing in the theory without, at

the same time, restricting the physical possibilities admitted
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by the original formulation. When one has restricted the covariance

group in this fashion as much as possible he will be left with some

subgroup of the original covariance group. This subgroup is then

defined to be the transformation group of the relativity principle.

As examples of such restrictions let me mention the gauge

_-_+_-_ _ _1_+_y,_m_ _n_ _h_ coordinate condltions of

general relativity. In electrodynamics we can limit the gauge

transformations to those of the first kind where _ is a constant

by imposing, for example, the Coulomb gauge condition v-A = 0.

Kretchmann investigated to what extent it is possible to limit

the group of all coordinate transformations. He proposed first

a set of coordinate conditions whlch have lately been rediscovered

by Komar (II) and used extensively by him and Bergmann in their

discussion of the quantization of general relativity. These

coordinate conditions are obtained by first constructing the

fourteen possible scalars that can be formed using only the

metric and its first and second derivatives. For a metric which

satisfies the equation of general relativity in absence of

matter, RUv = gP_Rpuav = 0 all but four of these scalars are

zero. The four non-zero scalars in general have different

values at different space-time points except in cases where the

metric has associated with it a group of symmetries or of

motions. (This concept of motion has been discussed in detail
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in Lecture II). Except in these cases one can then use the

values of the scalars at a point to serve as the coordinates

of the point. These are the coordinate conditions that

Kretchmann used. For the general situation there are no coor-

dinate transformations which maintain the Kretchmann coordinate

conditions. Hence h_ cuncluded that there is no relativity

principle in general relativity.

Actually, Kretchmann's criterion is not a very good one

for determining when a theory admits a relativity principle.

For instance if this criterion is applied to special relativity,

one can limit the group of Lorentz transformations to be the

identity element by non Lorentz covariant restrictions. Hence

one would conclude that there is no relativity principle in

special relativity either. For example we can destroy the

special covariance of a theory like that of Maxwell by imposing

restrictions on the electromagnetic field. We could locate the

origin of the reference frame by imposing conditions on the

first moments of the total energy. Additional conditions could

be used to fix the orientation of the axis. One can always

find a Lorentz frame in which these conditions are satisfied

unless the particular field we are looking at possesses some

symmetry itself. In a similar manner we can fix the _ in the

gauge transformation (ii) by requiring, for instance, that
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= i.

What criterion, then, can we use to find the relativity

principle for a given class of theories? I will try to

answer this question by first comparing the situation in

which we have enlarged the covariance group of a theory with-

we also change the physical content. In the case of the

Dirac field we were able to enlarge the gauge transformations

from those in which _ was a constant to those in which it is

an arbitrary space-time function. This enlargement brought

in the new field A_ which we then required to satisfy

equations (15). This enlargement of the theory does not

[

change the physical situation. On the other hand we could

have required that A_ satisfy the equations

(Au, ) : _jU (17)

where jU is given by equation (12). This enlargement does

change the physical content of the theory.

Similarly, we enlarged the covariance group from Lorentz

to arbitrary coordxnate transformations and thereby introduced

the metric as an additional element to be determined. Our

requirement that it satisfied equation (i0) introduced no new

physics since any metric which satisfies these equations is

necessarily a flat metric of special relativity. We inroduce

-21-



new physics by requiring the metric to satisfy the Einstein field

equation.

RUV - _U_R = - Tuv (18)
2

where T_'; is the energy momentum tensor associated with the other

fields and particles of the theory.

In both the electromagnetic and the gravitation cases the

difference in the two extensions of the theory is apparent. In

the case where we use equation (i0) for the metric or equation

(15) for _ these variables are not dynamical objects while in

the case of equations (17) and (18) they are. In the first

case their determination is entirely independent of the other

physical objects of the theory while in the latter case this

is no longer true.

In order to make more precise these differences I would

like to distinguish between two different types of elements

which may appear in a physical theory: absolute elements and

dynamical elements. This distinction will prove important since

we shall use the absolute elements of a theory to define the

relativity principle associated with the theory. Let me first

say how one can determine the absolute elements of a theory.

Suppose that the theory is given as a set of functional

relations

2i(YA) - 0 (19)
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between the independent variables, YA' of the theory. Further-

more suppose that equation (19) have associated with it a

particular covariance group of transformations. We now look

at all the invariant functions that we can form with various

subsets of the y's. By an invariant function I mean one whose

value does not depend upon a particular choice of gauge of

coordinate system. In electrodynamics the Fuv are invariant

functions of the A u. For the group of all curvilinear coor-

dinate transformations of general relativity, invariants are

more difficult to construct.

variable is not an invariant.

By itself, a scalar field

It becomes an invariant only

if we give an invariant prescription for locating the point

at which the scalar is to be evaluated. The values of these

functions formed from a given subset are uniquely determined

as a consequence of the equation (19) and nothing more, for

example the remaining y's, boundary conditions, initial con-

ditions, etc., then the y's that make up this subset consti-

tute an absolute element of the theory. Of course, these y's

themselves are not in general invariant under the covariance

group.

The test for absolute elements is not as difficult as it

first might seem. In order to know if a particular subset

forms an absolute element, we need only to construct at most as
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many independent invariants as there are members of the subset

in question. If they are all determined uniquely then any

other invariants formed from the subset will also be uniquely

determined since they will be functions of these original in-

variants. Furthermore, it will usually be quite obvious for a

particular theory what subsets form invariant elements.

In the theory with FU_ = 0, the _ are uniquely determined

up to a gauge transformation and hence any invariant formed

from then is uniquely determined. Thus they form an absolute

element. They do not form an absolute element when the

customary Maxwell's equations (17) are assumed to hold. This

is because the A's can be determined from Maxwell's equations

only with the knowledge of the source currents and boundary

conditions in addition to a knowledge of the gauge. Similarly

when RUv_a 0 the guy form an absolute object since they are

uniquely determined up to an arbitrary coordinate condition.

But this is not the case when the g's are assumed to satisfy

the Einstein equation (18).

As another example of a theory with absolute elements I

will give one which was proposed in the early days of rela-

tivity as an alternate possible gravity theory. It required

that the metric satisfy the equations

C = 0 (2O)
Uvpa

and
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where C
Uvpa

and its first two derivatives and R is the curvature scalar.

R = 0 (21)

is the conformal or Weyl tensor formed from the metric

It

can be shown that any metric which satisfies equation (20) is

conformally flat, that is, can, by means of a coordinate trans-

(22)

Along with

A= .... A.zuL,,,auion, be made to take _^_**=f_,,^--

guy = ¥ (x) _uV

where y(x) is an arbitrary space-time function.

boundary and initial conditions y(x) is determined by equation

(21). This theory possesses a spherically symmetric static

Schwarzschild-like solution but it gives the wrong value for

the advance of the perihelion of Mercury. If we introduce new

variables (J-g) "2gu_ and _ then the (_r/g)-½g,_ V form an

absolute element. It is interesting to note that equations

(20 and 21), Einstein's equations (18) and the flat-space

equations (i0) are the only generally covariant, local second

order equations that one can require the metric to satisfy.

Having defined the absolute elements of a theory we can

now determine the relativity principle for the theory. We

shall define the relativity group associated with the relativity

principle as that subgroup of the covariance group of the

theory which leaves the absolute elements of the theory in-

variant. If there are no absolute elements then the relativity
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group is identical with the covariance group.

If we apply this criterion to the two electromagnetic

theories characterized by equations (15) and equations (17) we

see that, in the former case, since Au is an absolute element,

the relativity group is just the totality of gauge transfor-

mations of the first kind with _ a constant. In the latter

case A_ is no longer an absolute element and hence the relati-

vity group is that of all gauge transformations with _ an

arbitrary space-time function. Similarly, when the metric

satisfies Ruvpo = 0 it is an absolute element and the relati-

vity group is the group of Lorentz transformations. When the

metric satisfies equation (18) it is no longer an absolute

element and so the relativity group is then the group of all

arbitrary coordinate transformations with non-vanishing deter-

minant. We see that with the above definition of a relativity

group we obtain the expected results in each of the cases dis-

cussed.

I want to discuss the significance of relativity groups

and absolute elements in physics. But first I would like to

criticize the approach to "preferred" coordinate systems in

general relativity* taken by Fock (2) and to comment on the

I will continue to use the term "general relativity" to describe

Einstein's theory in spite of Fock's objections to the term. I

believe that I have given a precise definition which makes the

term meaningful.
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relation of conservation laws to relativity groups.

Fock has suggested that the harmonic coordinate conditions

_j_/_ gUV], = 0 (23)
u

together with certain conditions at infinity such as no incoming

gravitational radiation, determine a preferred set of coordinate

systems To justify the term preferred for _Ai:_e...... _-- _

asserts with the support of plausibility arguments that, in the

case of an isolated system of masses, the harmonic conditions

together with suitable supplementary conditions determine the

coordinate system uniquely up to a Lorentz transformation• He

also points out that the harmonic coordinates satisfy a linear,

generally covariant equation. Fock further argues that "Only

if the existence of such a coordinate system is recognized as

reflecting certain intrinsic properties of space-time can one

speak of the correctness of the heliocentric Copernican system

in the same sense as this is possible in Newtonian mechanics•

If this is not recognized, or if the existence of the preferred

coordinates is denied, one is led to the inadmissible point

of view that the heliocentric Copernican system and the geo-

centric Ptolemaic system are equivalent."

While Fock implies that the e_istence of his preferred

coordinates reflect some intrinsic properties of space-time

he has not said what these properties are or how they are

related to the harmonic coor4inate systems. As far as I can

-27-



see, his arguments in favor of the harmonic coordinates are of

the same nature as those that might induce us to call the Car-

tesian coordinate systems preferred in special relativity.

While it is certainly true that the use of Cartesian coordinates

in special relativity simplifies many things, there is no

physical reason why we cannot set up other coordinate systems.

In fact we often do. For example, the hydrogen atom is best

described in spherical coordinates. What is essential and

physical in special relativity is the singling out of a class

of reference frames, the inertial ones, from among the totality

of all possible reference frames by the associated relativity

principle. How we happen to coordinatize an inertial frame

is of no physical significance but merely a matter of con-

venience. Similarly, in the case where A u satisfies

_'v - Av, u = 0, the gauge frame in which A u = 0 might be

preferred on the grounds of simplicity. But nothing is

changed physically if we use some other gauge frame. In

either case, the relativity group is the group of gauge

transformations of the first kind. Only if there is some

physical reason why we can only use one or another coordinate

system is it meaningful to talk about a preferred system.

Otherwise one is forced to use the vague criterion of "most

natural" or %implest" in picking out a preferred system.

-28-



At the beginning of this discussion I mentioned the

relationship that exists between the invariance properties

of a theory and the conservation laws associated with this

theory. This relationship is revealed in the theorems of

Emmy Neother (3) Usually the results of the Noether theorems

are given in two parts. One part applies to p-parameter Lie

groups of transformations and the other to groups of trans-

formations which depend upon q arbitrary functions of the

space-time coordinates. Actually the two cases are not

basically different as Bergmann (2) showed, since any group

of the second kind contains an infinity of one-parameter

subgroups, generated by all possible sets of the q functions.

The statement of the Noether theorem follows. We are

given a theory with a relativity group (in the sense in which

we have used the term) that is a p-parameter Lie group Gp and

whose equations of motion for the field variables YA are

i
derivable from a variational principle. If e (i = 1 ..... p)

are the parameters of the Gp, then there exists a number of

quantities t u. (u = 1 4) that satisfy p continuity

equations of the form

t u = 0 (24)
i'u

whenever the equations of motion for the field variables are

satisfied. This result only holds provided that the group Gp
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is a true relativity group associated with a relativity principle

and does not arise as a consequence of the introduction of abso-

lute elements into the theory. Thus, while the group of general

coordinate transformations contain an infinity of one-parameter

Lie groups they do not, in general, lead to continuity equations

of the form (24) if the metric is an absolute element in the

theory. Only the Lorentz group leads to continuity equations

in special relativistic theories. In these cases equation (24)

expresses the conservation law for the stress-energy tensor.

The conservation equations (24) are, as I said, only satis-

fied by solutions of the equations of motion and as a consequence

are sometimes called weak laws. If the theory has a relativity

group whose transformations depend on a number of arbitrary

space-time functions and if this group contains Gp as a sub-

group then the conservation laws associated with Gp can be

extended to strong laws that hold whether or not the equations

of motion are satisfied.

@i, u

These laws are

_0
m

(25)

As a consequence one can infer the existence of a set of super-

potentials U_ _ with the properties that

@U = uUV (26)
1 i 'V

and

UU.v = -U vu. . (26)
1 l
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In electrodynamics the superpotentials are just F_ where

is an arbitrary space-time function. Thus there exists an

infinity of conservation laws

_U, E 0 (27)
u

where

_u : (FUV_), . (28)
v

To date the only one of these conservation laws that can be

given a simple interpretation is for the case when _ = i. Then,

when the field equations are satisfied, ®u = ju and we have the

usual continuity equation for the current-density four-vector.

It is possible to interpret some of the terms appearing in other

i_'s in terms of higher electric and magnetic moments of the

charge distribution but it is not clear that they lead to any-

thing useful.

In the case of general relativity there again exists an

infinity of superpotentials which in turn lead to a corres-

ponding number of continuity equations. There are actually

a number of alternate expressions for the superpotentials that

differ from each other by quantities that are skew-symmetric

in the upper two indices. One set of superpotentials are:

U uv = (16_4C_)-Ig_l[g(gUSg _ - g_SgU_)_,8_k (29)

where the _ are four arbitrary space-time functions. These
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superpotentials can again be used to construct conserved currents

®u = uu'°'u" If, in a particular coordinate system, one lets each

of the _I take on the value unity while the others are set equal

to zero he obtains four continuity equations

GU 'v _ 0

where

(30)

v v v
@ = t + T

LI U U.
(31)

Here TUv is the stress-energy tensor due to matter fields, etc.

while tuv is the Einstein pseudotensor of stress-energy. The

usual interpretation of tuv is that it represents the stress-

energy of the gravitational field. However it does not trans-

form like a tensor density under arbitrary coordinate transfor-

mations and in fact is not even a geometrical object. This

fact has given rise to endless discussions of the role and

meaning of energy in general relativity. It seems fairly

clear by now that any attempt to single out, from the infinity

of continuity equations that follow from the superpotentials

U L1v of eq. (29), four special ones to describe energy and

momentum conservation is doomed to failure. Only in very

special cases where the metric admits a motion group is this

possible. (3) The essential point is that in general relativity

the relativity group of all coordinate transformations leads

to an enlarged class of continuity equations as compared to
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the situation in special relativity. Whether or not all of

these continuity equations are meaningful and can be tested in

principle at least, by observation is still an open question.

A definitive answer one way or the other would of course shed

a great deal of additional light on the general relativity prin-

ciple.

I have indicated how the relativity principle associated

with a particular theory is determined by the absolute elements

of that theory. I would like to conclude this disucussion with

a few words about the inverse relation. It is clear that some

such inverse relation must exist. Thus, if we insist that the

group of all coordinate transformatio_ is a relativity group

rather than just a covariance group for the theory, we are

forced to treat the metric as a dynamical, as opposed to

absolute element, since no metric admits the group of all

possible motions. The requirement that the group _ all coor-

dinate transformations be the relativity group of physics is

thus by no means a trivial statement. If we add the require-

ment that the equations that determine the metric are local

equations and are of second differential order in the metric

then there is just one system of equations that satisfy these

requirements, namely equations (18).

From what we have said, it appears that the relativity
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principle one assumes determines the absolute elements of the

theory and at the same time greatly restricts the class of

possible theories one can construct consistent with this rela-

tivity principle. We are thus supplied with a very useful tool

to guide us in formulating physical theories. In particular,

the relativity principle helps us single out the absolute

elements in a theory. Suppose that a given theory has an

obvious relativity principle associated with it such as in

the case of special relativity and that the associated rela-

tivity group is a subgroup of some larger group, for example

the group of all coordinate transformations. Then in general

it may be possible to reformulate the original theory so that

its covariance group is the larger group. However to do so

we must introduce additional, absolute elements into the

theory. Actually these elements were there in the first place,

although their existence was masked by the fact that they had

been assigned particular values. That is, the guv are present

in special relativity with the fixed preassigned values of the

Minkowski metric. However, once we have called attention to

their role as absolute elements in the theory, we can raise

the general question of the validity of a theory which admits

them in this roic. To elaborate on this, I will discuss what

might be called a "general principle of reciprocity".
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It is seen that the absolute elements affect the physical

behavior of a system. That is, a different assignment of values

to the absolute elements would change the physical behavior of the

system. Assigning different values to the metric might result in

particle paths that are circles rather than straight lines. On

the _h_ h=,_ +h_ _h,,_=1 _eha,,_ _ = _,,_+_m _ ,_ =_

the absolute elements. An absolute element in a theory indicates

a lack of reciprocity; it can influence the physical behavior

of the system but cannot in turn be influenced by this behavior.

This lack of reciprocity seems to be fundamentally unreasonable

and unsatisfactory. We may express the converse in what might

be called a general principle of reciprocity: each element of

a physical theory is influenced by every other element. In

accordance with this principle, a satisfactory theory should

have no absolute elements. It was this dislike for absolute

elements that in part led Einstein to treat the metric as a

dynamical element and to deduce the equations of motion (18).

What then is the role of the notion of absolute elements

in a theory? First it can be used to judge a theory with

regard to its satisfying the above principle of reciprocity.

If it contains absolute elements, it is unsatisfactory. We

then must extend the theory so that these elements become

dynamical elements and the relativity group becomes the entire
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group of transformations, and that there are no remaining abso-

lute elements. In doing this we can use the fact that our new

\

equations must be covariant with respect to the enlarged rela-

tivity group of transformations to help discover the form of

these equations. If further we require that these equations be

I_i in _ ......... _ can be .... _ by ..... 1.._ _,,e sense *_=* *_" _ ..... _ __ local

means then we can restrict the possible equations to a very

few.

I would like to illustrate the consequence of the above

discussion in terms of the justification it provides for

(14)
introducing Yang-Mills type fields into physics. From

our point of view, these fields are always present in a theory

which is invariant with respect to rotations in isospace but

they are predetermined absolute elements. When we enlarge the

covariance group to include the possibilities of different

rotations in different directions at each space-time point,

these fields appear explicitly but can be required to satisfy

equations analogous to (15) which does not change their status

as absolute elements. If we demand that these fields be

physical elements, then we must extend the theory as Yang and

Mills did. This example suggests that we should examine other

transformation groups in physics to see if they can be imbeded

in some larger group. Then the theory which admits the original
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group as a relativity group can be made to admit the enlarged

group as a covariance group with the addition of new elements

into the theory. We could then ask if these new elements should

remain as absolute elements or if, instead, the theory should

be enlarged so that the covariance group becomes a relativity

group and the absolute elements become dynamical elements.

I would like to conclude this discussion of relativity

groups and absolute elements With a few comments on approximate

symmetries and the strong interactions of strange particles.

When we speak of a symmetry of a system we refer to a particular

physical situation. It is something which, in principle at

least, can be observed directly. Thus we speak of the spher-

ical symmetry of the field of a point electron. As a conse-

quence of Noether's theorem there are a number of conserved

quantities associated with this symmetry, for example, the

angular momentum of a charged particle moving in a spherically

symmetric field. It sometimes happens that some element

always appears to possess a certain type of symmetry whenever

we look at it. We tend then to say that this symmetry is a

law of nature and to formulate other laws of nature so as to

include it. When we do so the element with the symmetry becomes

an absolute element in the theory. If we accept the hypothesis

that there are in fact no absolute elements in physics we see

-37-



that the observed symmetry can be explained in the framework

of the theory wherein the absolute element is taken as a

dynamical element by saying that it interacts only very

weakly with the rest of the physical system. The symmetry

it would possess in the absence of interaction is thus

approximately maintained in practice. Perhaps we can look

upon the conservation laws and associated symmetries of

strong interactions as being due to the presence of

additional elements that interact only very weakly with

the strange particles in much the same way as we now think

of the gravitational field, which, in the absence of matter,

has the symmetries of the Lorentz group but, when allowed

to interact with matter, loses this symmetry.
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I. INTRODUCTION

In this lecture I shall consider the structure of stars

of high density at zero temperature. For the sake of sim-

plicity I shall assume the star has reached the end point of

thermonuclear evolution and all the elements are in a state

of statistical equilibrium. The question I _,_=-_11_ask is:

Is there a limit for the mass of such stars? And, if there

is, what would happen if such mass limit is exceeded?

I would like to remark that this problem stands in the

very frontiers of elementary particle physics and gravita-

tional physics. There are some interesting paradoxes which I

am not prepared to give answers to. These paradoxes deal

with elementary particles, on the one hand, and the geometro-

dynamics, on the other.

In the past this problem was connected with the determi-

nation of the proper equation of state at a zero temperature.

For the sake of simplicity we shall limit ourselves to stars

of zero absolute temperature. Even so, the complexity of the

equation of state is still not solved. We have a general idea

about the equation of state up to nuclear density, (_ 1014g/cm 3)

but not beyond. However, as we shall show later, the proper

form of the equation of state will have little to do with the

general conclusion we shall arrive at.
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Since we limit ourselves to the consideration of stars

at zero temperature, we can consider the star to be nearly

at thermodynamic equilibrium with the space surrounding it.

Consequently, we can disregard radiative transfer processes

inside the star. Moreover, the star is also assumed to have

reached the end of its thermonuclear evolution. In almost

all stars this end is far from being reached yet. The nuclear

processes inside them are just on their way to convert hydrogen

or helium into heavy elements. However, from nuclear physics

and thermodynamics we can infer what state of affairs exist

when the end of thermonuclear evolution is reached. The end

point is quite independent of the intermediate nuclear pro-

cesses. Of course, we shall have no knowledge of the rate

at which the end point is reached, but this is not what we

are interested in.

In the past the problem of the structure of stars at

zero temperature has been carried out in two phases. In one

phase, the density of the star considered is taken to be

relatively low, being around 106g/cm 3. The star derives its

pressure to counteract the crushing force of gravity from the

electrons. At zero temperature the electrons are degenerate.

If the mass of the star is not too high, the Fermi pressure

of the electrons is enough to counteract the gravity. When
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the mass of the star exceeds.a certain limit, (around 1.2 M ),
®

the Fermi pressure of electrons is not enough to counteract

gravity and in principle the star collapses to a point. (For

details, see Appendix.) But before the star is squashed to

a point, the electrons will be crushed out of existence (being

_h_rh_d by protons _ _rm ,_,,_,_% =,_ _ assumption

that the electron gas pressure supports the star is no longer

valid. Detailed theory of stars of this category, known as

white dwarfs, has been furnished by Chandrasekhar a long time

ago. The critical mass Mcr at which the theoretical radius

for white dwarfs is just zero is known as the Chandrasekhar

mass limit. Mcr is given as:

Mcr = (5._3/ ( _ e) 2) M_ . (2)

where

the star. U
e

hydrogen.

U e is the ratio of numbers of nucleons to electrons of

is very close to 2 for all elements except

When the density is very high, the electrons are crushed

out of existence by the inverse beta decay process:

P + e- _ n + v (3)

so that the star essentially is composed of neutrons. This

is the other phase of the theory of zero temperature stars.
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The pressure of the neutrons holds the star against the

squashing force of gravity. There is also a mass limit for

such neutron stars. The mass limit was considered by Landau

first, and later by Serber. Detailed numerical calculations

were done by Oppenheimer and Volkoff in 1939. They consi-

dered the neutron gas to be a perfect Fermi gas without in-

ternal structure (the internal structure of nucleons was

not looked at closely until 1950), and they took into

account the general relativistic effect (to be discussed

below). The critical mass they obtained was 0.76 M®, con-

siderably smaller than that for white dwarfs.

In the following sections I shall first derive the

equations of stellar structure in the absence of general

relativistic effect. The more general equations as used

by Oppenheimer and Volkoff (Phys. Rev. 5__5 374 (1939)) shall

be stated only. For detailed derivation the reader may

refer to their original paper. Next I shall discuss the

equation of state. Afterwards, the results of Chandrasekhar

and that of Oppenheimer and Volkoff will be described.

Finally, we shall review the problem that was first consi-

dered by Oppenheimer and Snyder, the problem of continued

gravitational contraction when the stellar mass exceeds the

critical mass for white dwarfs and neutron stars.
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II. THE EQUATIONS OF STELLAR STRUCTURE

a) The equation of stellar structure at zero temperature

without general relativistic correction.

Here we assume (I) spherical symmetry,

(3) static equilibrium.

At every point, r,

vitational force due to the mass M(r) contained inside the

sphere of symmetry of radius r. (Figure I)

(2) no rotation,

of the star there is an inward gra-

Figure I.

The Hydrostatic Equilibrium of a Star

The gravitational force f acting on a unit volume at r is:

f = p G (r) (4)
2

r

where G is the gravitational constant, f is balanced by the

hydrostatic pressure gradient d__P. Therefore, the first
dr
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equation of stellar structure is:

d__P
= - p _ (5)

dr r

The second equation defines M(r) :

r

u,_ = r A.^ 2 ( )_"_, _"w r _ 6
0

Usually Equation (6) is written in the form of the

following differential equation:

d M(r) = 4 n r 2 P (7)

dr

However, a glance at Equations (5) and (7) tell us that

there are no unique solutions because there are only two

differential equations to determine three dependent variables,

M(r), P (r), and P(r). The equation of state supplies us

with a relation between P and P :

P = P( p ) (8)

The boundary conditions for Equations (5) and (7) are

as follows:

at r = 0, M = O, and P = Pc

at r = R, P = 00 P = P and M =
0 Mstar

(9)
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where R is the radius of the star, and Mstar is the mass of

the star. It should be noted that there is some redundancy

in these boundary conditions. We shall discuss them later.

b) The equations of stellar structure at zero temperature

with the general relativistic correction:

_,,_, _,,e same 2 3 _,_ _,...,,..i =,_-

section, when the general relativistic effect is taken into

account Equation (5) is modified to be:

P 4nr 3

dP _ ( P (r) + c 2) G[ M(r)+ _ P(r) ] (i0)
dr

2 G M(r) ]
2

C

which is P.

gether with

included in the mass term M(r).

causes the space to be curved.

while Equation (7) remains unchanged. The meanings of the

extra terms that appear in Equation (i0) are as follows:

In Equation (5) P (r) stands for the energy density c 2. We

have thus interpreted P in Lecture 4, in deriving the Einstein

field equations. The energy density includes not only the

rest energy of the mass, but also the stress energy density

Therefore, it is natural to see P appearing to-

p . Similarly the stress energy should be also

The presence of large density

This is reflected in the de-

nominator in Equation (i0). The metric and coordinates used

here are of the Schwarzschild type.
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c) The Equation of State.

The equation of state

P = P (p ) (8)

provides an additional functional relation among the de-

pendent variables so that Equations (5) and (7) may be solved.

Equation (8) must be obtained from the statistical con-

sideration of the kinetic properties of the gas. The pressure

of the gas arises from either the electrons or the neutrons.

Both are Fermions. Hence the gas pressure is essentially a

degenerate Fermi gas pressure. If there is no nuclear tran-

sition, and the gas is perfect, free from any internal degrees

of freedom other than spin, and the kinetic energy of the gas

is small compared with its rest energy (non relativistic

degenerate gas) , then

5/3
P = K 1 p (ii)

If the contrary is true, then

p = K2 p 4/3 (12)

K 1 and K 2 are constants depending on the mass of the gas

particles. However, even in the presence of nuclear tran-

sition effect, the dependence of P on p is usually monotonic.
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When are such simple relations as shown in Equation (ii)

and (12) valid? H. Harrison, M. Wakano and myself looked

into this problem from the point of view of nuclear equili-

brium. Salpeter and Cameron later looked into this problem

with the same point of view.

equilibrium this quantity b:

B(_,A) - (E Fb =

A

The idea is that under nuclear

2

- c (mn - mH)) (13)

should have a maximum value with respect to arbitrary changes

of 8 and A. B(s-A), the binding energy of the nucleus (s, A),

II

is given by the Weizsacker semi-empirical formula. E F is the

Fermi energy of electrons.

m H that for hydrogen atom.

different densities is tabulated below:

physical Journal 13___4669 (1961)).

EF(mev)

lOgl0P(g/cm 3)

nucleus

0.6 2.5 3.9

7.15 8.63 9.15

m is the mass of free neutron and
n

The equilibrium composition for

(Sa Ipeter, Astro-

6 .i 7.0 8.5 9.5 14.8

9.69 9.87 10.13 10.28 10.84

(26,56) (28,62) (28,64) (28,66) (28,68) (30,76) (30,78) (30,80)

E F 20.6 24.0 11.53

lOgl0 P 11.28 11.53

neutrons (32,90) (38,120) neutrons

At low density the equilibrium composition is mainly
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Fe 56. As the density increases the Fermi energy of electrons

will increase and eventually it will be so high to promote

the inverse beta process:

e- + (Z,A) " (Z-I,A) + _ (14)

The threshold energy of electrox_s for reaction (14) is the

binding energy difference of (Z-I,A) and (Z,A). As reaction

(14) goes on and on the ratio of A to Z will increase. The

nucleus increases in size until the number of neutrons are

so high that the binding energy is essentially zero and the

nucleus disintegrates into free neutrons. Just before the

formation of free neutrons the final element formed is Sr 122

Actually, the final composition is not pure neutrons.

It will be a mixture of about 1/8 as many protons and electrons

as neutrons. This is the limiting composition without con-

sidering the presence of hyperons.

The limiting ratio of eight neutrons to one proton may

be understood in the following way: The equilibrium reaction

among the neutrons, protons, and electrons is:

n _ P + e+ + v (15)

If the Fermi energy is high, we may neglect the energy dif-

ference of the neutron to the proton-electron system (i mev).

- i0 -



The neutrinos may be neglected when we talk about equilibrium

configuration. The energy momentum relation in the relati-

vistic limit _ simply

E = cp (16)

From Equat 4_- I1_ we _=- _-_=_ +h=_ _h_ _n_rgy nf _h_

neutron is roughly the sum of that for the electron and the

proton and this energy is equally divided between the electron

and proton. The wave lengthl(k _) of the electron and the

proton will be twice that of the neutron. Therefore, the

spacial volume the neutron will occupy (_ la ) is roughly 1/8

of that of the proton or electron. Hence it will take 8 neutrons

to fill up the same volume occupied by a proton or electron

when equilibrium is reached.

The result for the equation of state is presented in

P

Figure 2 in which _ is shown as a function of P .
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Figure 2.

The Pressure Density Relation of a Zero Temperature Gas.

P and -P are plotted as functions of

p p_/3

P respectively, as indicated.

When the density if low, the material ia mainly made

of solid iron of density 7.8 g/cm 3. It has very little com-

pressibility. Therefore _rises almost vertically until the

atoms in iron are pressure-ionized. Then _4,1evels off. This

is the region of atomic physics. When the pressure ionization

is completed, _rises as _I/3 (non relativistic Fermi gas).

When _ _I0 6 g/cm 3, the electrons become relativistic and _4
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stays constant At p -- 10 7 - i0 II the nuclear transition

occurs and _jdrops off a little bit. After this, the com-

position is mainly neutrons and_rises again. AtP ~ 1015 g/cm 3

nuclear density is reached. We do not know what happens

beyond this density. We may assume that the state behaves

as a hard core gas. Then _,should rise vertically after the

density corresponding to the close packing of hard cores is

reached. In this graph we have assumed the opposite, namely

that the gas behaves as a perfect Fermi gas with 1/9 electrons

and protons and 8/9 neutrons. There is a great deal of un-

certainty to the equation of state when the nuclear density

is reached.

We shall put an upper limit to this uncertainty by

considering the gas as incompressible when the density is

beyond 1015 of 1016g/cm3 -- a density corresponding to the

close packing of the repulsive core of the nucleons. Any

real gas is less incompressible than an incompressible gas.

Therefore, this is the upper limit for any real gas. However,

incompressibility is actually an absurd limit: the speed of

P

sound in any material is governed by the ratio _4_. For an

incompressible fluid the speed of sound is infinite and this

violates the requirement that signals cannot be propagated

with a speed greater than the speed of light. Relativity

- 13 -



sets an upper limit 1/3 on the ratio of pressure to energy

density.

If we consider the equation of state for an incompressible

fluid (in spite of the above reservation), it will furnish

us with a basis for analysis. We shall show that even for

an incompressible fluid some drastic thing may happen to a

star. Anything less than an incompressible fluid will only

strengthen, and not weaken, our conclusions.

III.

(I0), together with Equation (7).

are as described in Equation (9).

We start by asserting a value

INTEGRATION OF STELLAR STRUCTURAL EQUATIONS

The result of Chandrasekhar and that of Oppenheimer

and Volkoff.

We shall sketch a method to integrate Equations (5) or

The boundary conditions

Pc for the central density.

Once this is done, the pressure at the center Pc is deter-

mined by the equation of state. M(r) is determined in the

vicinity of r, with the condition M(o) = 0. This condition

is mandatory in order that singularities may not occur for P

and P at the center.

M(r) = 4/3 "r 3 P for r -- 0 (17)
c
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At some distance _r from the center, the decrement of P, _ P,

may be computed from Equation (5) or (i00 the pressure

equilibrium condition. The decrement of density, _P is

obtained from the equation of state. At some further distance,

say 2

_+ _

r = 2 _r.

r, frun the center, M(r) may then be determined _sing

for the density. This, in turn, determines dP at

dp is then obtained, from which a new value of

M(r) may be computed.

until P becomes zero.

And so on. We continue this process

This occurs at some distance r = R.

R is then the radius of the star. The mass of the star is

given by Equation (6). Both R and Mstar are not pre-determined.

Only the central density, Pc , is pre-determined. Figure 3

illustrates this method of integration of a star.

P

> ¥

Figure 3.

Schematic IIIustration of

Numerical Integrations of s Star
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At r = R, P is not necessarily zero. For example, at low

enough density (say P _ 108 g/cm3), the end product of

thermonuclear evolution is iron. If the outer shell of the

star has evolved to this end, the edge of the star is solid

iron which has a density of 7.8 g/cm 3. The star will look

like a polished iron sphere. This is the reason why in

Equation (9) the density P0 at which P = 0 is not set to

zero.

In this approach we have a free choice of only one boundary

condition, the value of central density.

Instead of starting with a known mass and radius of the

star, and determining the central density from the stellar

structure equastions, we assume a central density and calcu-

late the consequent mass and radius. This is a very odd approach

in physics. We solve the problem first before we know what

the problem is. But this approach is convenient in our sub-

sequent discussions.

Now I shall describe the result of Chandrasekhar and

that of Oppenheimer and Volkoff. Let us start with a reasonably

small central density, say 103 g/cm 3. Half of the star is

pressure ionized, and the star is supported partially by the

pressure of bound electrons and partly by that of the free

electrons. Such an object has a mass around .01 M e and is
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something in between a star and a planet. As the central

density is increased, the pressure ionization becomes more

and more complete. The mass also increases. At P =
c

105 g/cm 3, the mass is around a few tenths of M® . At

Pc = 107 g/cm3 the mass of the star is around IM® At

Pc = 108 g/cm3 the mass of the star is around 1.2 M® .

This density is already very high and the nuclear tran-

sition discussed in Section 2(c) begins to take place. The

number of electrons is rapidly decreasing. But let us

ignore all the nuclear transitions and let us assume the

number of the electrons does not change, and that the pressure

is entirely due to electrons. With this assumption when

is increased without limit, Mstar approaches an asymptotic

value -- the Chandrasekhar mass limit, which, for a compo-

sition of iron is around 1.3 M® . The dotted curve of

Figure 4 shows Chandrasekhar's result which he obtained

under the assumptions that the number of electrons does not

change and that the pressure is entirely due to the electrons.
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Figure 4.

The Central Density and Mass Relation for a Zero-Temperature Star

Nuclear transitions begin at a density of around

10 7 g/cm 3 and become important when P > 10 8 g/cm 3. The

general relativistic effect becomes important when P >

I0 II g/cm 3. The solid curve of Figure 4 shows our result.

For p < l0 8 g/cm 3 the solid curve and the dotted curve

almost coincide. As Pc approaches 10 8 g/cm 3, the electrons

are gradually crushed out of existence and our curve begins

to depart from that of Chandrasekhar's. Instead of ap-

proaching 1.3 _ asymptotically, the mass reaches a maximum

and begins to decrease with increasing density. I shall

call this point of maximum mass (indicated as "a" on
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Figure 4) the first crushing point. The part of the curve

that was computed by Chandrasekhar represents the stable

situation, that is, it is stable against small oscillations.

If we apply a pressure pulse to this star, it oscillates

with finite amplitude and ultimately it settles down to its

original equilibrium, after the oscillation is damped.

However, a star which lies along the portion of the curve

just above the first crushing point is not stable. If it

is disturbed by the slightest amount, it departs more and

more from the calculated quilibrium. Such a star is in an

unstable equilibrium. The reason for this is that on

curve segment a b the equilibrium mass decreases with in-

creasing density. Physically, this is the density regime

where the electrons are being squashed out of existence and

4/3
P/P decreases with increasing density (Figure 2). If

the star is disturbed by a slight amount, some electrons

undergo inverse beta decay. The pressure decreases and the

star collapses a little bit, hoping to restore its initial

central pressure. But the pressure does not increase

rapidly enough with increasing density. So the star collapses

more. This continues until the neutron pressure becomes

4/3
dominant so that P/p rises again.

- 19 -



Oppenheimer and Volkoff computed the structure of such

stars under the assumptions that the gas is composed entirely

of neutrons. Their result is the broken curve (b c d). They

found that as the central density Pc increases without limit,

Mstar approaches an asymptotic value of 0.76 M_ . This value

of the mass is smaller than that given by Chandrasekhar for

white dwarfs of iron composition (1.2 M®) .

Now I would like to raise two questions. First, what

will happen to a star if its mass exceeds the Oppenheimer-

Volkoff limit? Second, how will the Oppenheimer and Volkoff

result be modified by a more realistic form for the equation

of state Equation (8)?

Unfortunately, we do not know the equation of state for a

gas whose density exceeds 1015 g/cm 3, the nuclear density.

However, it is useful to take the extreme form of the equation

of state, that is, the equation of state for an imcompressible

fluid. As we have remarked previously, the idea of an incom-

pressible fluid is not even consistent with relativistic con-

cept. But an incompressible fluid is an upper limit for real

gases. If a star composed of an incompressible fluid collapses,

then it should certainly do so for any compressible fluid.

In the next section I shall discuss a star composed of an

incompressible fluid near the Oppenheimer-Volkoff mass limit.
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IV. THE GRAVITATIONAL COLLAPSE OF AN INCOMPRESSIBLE STAR

As in Section III, we first consider a star of low mass

so that the general relativistic effect is not important. The

gravitational potential at r inside such star is given by:

la t--%

_. = -O (18)
in r

where M(r) is the mass enclosed inside a sphere of symmetry

of radius r (Figure [ ). Since the star is assumed to be in-

compr e s sibl e,

M(r) 4_= -- Pr 3 (19)
3

where D is the density of the incompressible medium.

inside the star:

Hence,

4_ 2

_in = _0 - -_ GPr (20)

and outside the star:

Mstar

 out : -c (21)
r

is determined by the condition that _in and _out must be0

continuous at the surface of the star and that _out = 0

at r = _ .

The hydrostatic equation (Equation (5)) takes the fol-
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lowing form:

- dP _pB_ 8_ Gp 2m = -- - r (22)
dr _r 3

The pressure is obtained by integrating Equation (22):

4_ 2 2
p = p _ m GP r (23)

0 3

P
0

is determined by the condition that P =

face of the star.

0 at the sur-

Figures 5 and 6 show the behavior of P and _0 as functions

of r. _. has the form of a simple harmonic potential. The
in

set of curves (i), (2), and (3) correspond to different as-

sumed masses for the star. In general, with increasing stellar

mass, the radius, the pressure at the center, and the absolute

value of _ at the center are increased.

--_,%_

• /
/ /

>'r

Figure 5
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Figure 6

Now we will consider an electron-positron annihilation

at the center of this star. If there were no gravitational

2
field, the energy of the photons would be 2meC 1.02 mev.

Because of the gravitational field, the energy of the photons

as measured by a distant observer will be:

E = 2mec2 - 2m_ (24)
Z

The energy required to materialize an electron-positron pair

2
in a space free from a gravitational field is 2meC . The

gravitational field diminishes the externally supplied energy

2
for materialization to 2meC - 2m_0. This energy as a func-
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tion of the distance from the center is plotted in Figure 7.

The numbers on the curves refer to increasing stellar masses.

19,/' //

Figure 7
y-

So far we have used only non-relativistic concepts. In

the language of general relativity, the gravitational poten-

tial _ is replaced by the 4-4 component of the metric tensor

g_8" In general, the rest energy of a particle is given by:

E+ = + m (-g44)½ (25)

where m is the rest mass in the absence of gravitational field.

The positive sign refers to particles (positive energy state)

and the negative sign refers to antiparticles (negative energy
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state).

Outside the star g44 is given by (Lecture 4):

g44 = - (i - 2G___MM) (26)
rc 2

For a given density D, there exists a mass M such that

g44 = 0 at the surface of the star. This defines the cri-

tical mass:

4n. 3c 2, 3/2

Mcr : -_(_) (27)

In the above expression the radius of the star is equal to

the circumference divided by 2_. If the mass of the star

does reach this critical value, at the surface of this star

the annihilation of a pair of electrons will not yield any

energy as seen by an observer outside the star. Similarly

no external energy is required to create a pair of electrons

on the surface of this star.

Is this possible? How does the star ever get to this

stage? What happens to matter inside?

The state Mstar = Mcr is certainly an idealization.

By physical arguments one can prove the star cannot possess

a mass > Mcr. Starting with a fluid of a given density, and

a mass a little less than the critical mass, what will one
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observe as matter is gradually added to the star in such a way

that at each stage the heat energy derived from the gravitation-

al work is removed? For each gram added, a fraction will go

towards increasing the mass of the star and a fraction will be

radiated away. r-'ne radiated fraction-w±_: 1 I approach unity _--

the mass of the star approaches the critical mass, and very

little will go into increasing the mass of the star. (The

mass of stars is defined by the gravitational field they

produce. )

I have made a computation of the rate of increase of

Mstar with respect to the mass (M) added. The result is:

dMstar [ 1 ( M ) 2/3 ½= - _ (28)
dM Mc r

and
dMstar = 0 as M
dM " Mc r

This is just what we expected.

M = Mcr cannot be approached.

However, even the limit

The reason for this is that we have based our arguments

on the assumption that the zero separation of the positive

and negative energy states occur at the surface of the star.

Yet the critical condition of zero separation is already
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attained at the center of the sphere when the stellar mass M
½

is 16% short of Mcr. For M = 0.8382 M (-g44) is zero
cr

at the center of the star. A value of M greater than 0.838Mcr

leads to a singular and physically unacceptable behavior of

½,
the metric, in the sense that (-g44) becomes negative for

some values of r. For M = 0.8382Mcr the pressure is given

by:

2

3__P_P _ 4 ( 3c ) 1 (29)
pc 2 8_GP r-_

r << 3c2 )%
( 8_GP = critical "radius" of the

star.

As M approaches 0.8382M
cr

star.

p ._ at the center of the

What happens if we allow the star to be compressible?

The density will increase and by Equation (27) Mcr will be

decreased. Hence, the critical state of vanishing g44 at

the center will be reached for a lower masson. Starting from

simple physical assumptions of the composition and the struc-

ture of the star, we have arrived at a seemingly unacceptable

physical situation. We have come to the untamed frontier

between elementary particle physics and general relativity.
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Of all the implications of general relativity for the struc-

ture and evolution of the universe, the question of the fate

of great masses of matter is one of the most challenging.

The issue cannot be escaped by appealing to stellar explo-

sion .... *=.4_:I insta_l _y, _ _ _ _1_p _s it presents

itself is one of principle, not one of observational physics.

Perhaps one original assumption about hydrostatic equi-

librium is not realized: This is the proposal of Oppenheimer

and Snyder. They consider a collection of particles separated

from their common center by distances of the order of the

solar radius. They note that the fall towards the center of

the star will take only a few hours as measured by an observer

on one of the particles, but will take forever as measured

by a remote stationary observer. They suggest the same inde-

finitely prolonged fate for a star whose mass exceeds the cri-

tical mass. This approach does not give an acceptable answer

to the fate of a system of A-nucleons under gravitational

forces for the following reasons:

(I) No mechanism for release of the gravitational energy

into the surroundings is taken into account. The particles

are considered to convert gravitational potential energy into

kinetic energy, but not into heat and radiation. Therefore

- 28-



this approach excludes from the start any decrease in the mass

energy of the system and rules out a priori any approach to

an equilibrium, if there is one. The mass of the system as

viewed by a distant observer remains forever the same. This

is _-_ ..... _ _ phy_r_] _u_tion in which the particles

will collide, give off heat, lose speed and thus slow down

their contraction.

(2) The particles are envisaged as falling into a

Schwarzschild singularity. However, a Schwarzschild singu-

larity does not give an adequate representation of the forces

sustained by a particle at high compression. The forces bet-

ween nucleons enter in a most vital way. Of course it is not

clear what consequences these forces lead to. We have noticed

that hard core forces at the one extreme of an incompressible

liquid are as incapable of sustaining the system as are the

pressures of a perfect Fermi gas at the opposite extreme.

But either extreme is inade4uate because any answer is incom-

plete that does not deal with the ultimate constitution of a

nucleon.

(3) The particles are envisaged as "cutting themselves

off from the rest of the universe" by falling inside the

Schwarzschild singularity. This expression would seem to sug-
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gest that the particles lose their effect on the rest of the

universe. However, in Oppenheimer and Volkoff's discussions

they implied that at the same time they maintain an unchanged

gravitational pull on a distant test mass--the direct opposite

to "cutting themselves off _,,_ _.,_ res_ of _h_............,inlv_.rse."

For the above reasons the Oppenheimer-Volkoff approach

does not relieve us of the difficulties concerning the fate

of massive stars. _t appears that the final mass of the star

must be very substantially smaller than its original mass_

It must be finite, and limited to a fixed upper bound, no mat-

ter how many nucleons are in the star.

If we are to reject as physically unreasonable the con-

cept of an indefinitely large number of nucleons in equili-

brium in a finite volume of space, it seems necessary to con-

clude that the nucleons above a certain critical number con-

vert themselves to a form of energy that can escape from the

system as radiation. If the energy were to escape in the form

of particles, we could in principle extract the energy from

the emerging particles and then let them fall back on the

system. The build up of these particles on the system would

then ultimately lead back to the paradoxical situation from

which an escape is sought. Radiation presents no such dif-
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ficulty. However low its energy, it can always escape from

the system by travelling radially outwards. No escape is

apparent except to assume that the nucleons at the center

of a highly compressed mass must necessarily dissolve away

into radiation--electrQmagnetic, gravitational, or neutrino,

or some combination of the three--at such a rate or in such

numbers as to keep the total number of nucleons from ex-

ceeding a certain critical number.

In view of the absence of any acceptable alternative

equilibrium, it appears desirable to take seriously this pos-

sibility of nucleonic disruption and explore its consequences.

Dissolution of nucleons into neutrinos at very high pressures

would be a process fully compatible with the laws of the

conservation of momentum and energy. It would violate the

law of conservation of nucleon number, but leave unaffected

most other conservation laws. This possibility does not con-

tradict the present lower limit to the life time of the nu-

23

cleon against spontaneous decay. (T½ = 4 X i0 years) This

decay rate is determined for essentially free particles, where-

as, we are dealing with nucleons in a highly compressed state.

A motion picture of a large mass of nucleons dissolving

away under high pressure into free neutrinos presents a fan-

- 31 -



tastic scene when run backwards. Sufficiently many neutrinos

of the right helicity coming together from all directions into

one region of space over a short time interval materialize

into nuclear matter.
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APPENDIX

The Mass-Radius Relation and the

Mass Limit for White Dwarfs

We shall demonstrate here that, when the mass of a white

dwarf exceeds a certain limit, no equilibrium configuration

exists.

The mean density _ is:

(_ M_ (A-I)
R•

where M is mass of the white dwarf and R is its radius.

average gravitational force f inside the star is then:

The

GM r M a
f = P -- O< -- (A-2)

ra Rs

The pressure P of the degenerate electron gas which sup-

ports the star has the following dependence on P:

p o_ _s/3 < M 5/s
non-relativistic gas (A-3)

R6

M 4/s

p _ p4/_o< relativistic gas (A-4)
R 4
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The different dependence of P on P is due to the fact that in

pQ
the non-relativistic approximation E _-- and in the other

2m e

E -- Pc. (For details, see M. Schwarzschild, "Structure and

Evolution of the Stars", p.57) From Equations (A-3) and (A-4)

_h_ average pr_s_11r_ gradient d__P is:
.... dr

M 8/a
d__P _ non-relativistic (A-5)
dr R 6

d P M 4/a
o< relativistic (A-6)

dr R s

For a star in equilibrium, Equation (5):

d__P = -P __GMr (5)

dr r a

must be satisfied. Now we compare Equations (A-5) and (A-6)

with Equation (A-2) we find that for the non-relativistic

dP
case -- and f depend on different powers of R. Thus the

dr

star has the ability of bringing the two forces into balance

by adjusting its radius. For example if d_PP is bigger than
' dr

dP

f, the star will expand, increasing its radius until d_r and

f are equal.

This is not so in the relativistic case.
dP

and f
dr
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depend on the same power of R. Hence the star does not have

the ability to achieve equilibrium by adjusting its radius.

On the other hand, d_PP and f have different power dependence
dr

on M. Hence there exist a specific mass value, the limiting

mass, for which the two forces are in exact balance. For mass

greater than the limiting mass the gravitational force will

always exceed the pressure force, whatever the radius. Thus

the star has to collapse.

On the other hand, when the mass is smaller than the ini-

tial mass, the gravitational force will be smaller than the

pressure force and the star will expand. In this expansion

the density will decrease until, at least in the outer por-

tions, the degeneracy changes from relativistic to non-rela-

tivistic. Now with increasing radius the pressure force de-

creases faster than the gravitational force so that eventually

the two forces will come into balance.

We may conclude that in stars heavier than the limiting

mass the force of the degenerate pressure is never sufficient

to balance gravity, that a star lighter than the limiting

mass is able to balance gravity with degenerate pressure, and

that to achieve this balance in the latter case the star has

to adjust its radius to the value prescribed by the mass-radius

relation for degenerate models.
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Preface
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University organized the series as an introduction to

the subject for non-experts, emphasizing the observable

implications of the theory and the potential contribution the
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general relativity.
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For this reason, this record does not include a complete

mathematical development of the subject, but, we hope, does

contain sufficient mathematics to elaborate on the conceptual

discussions.
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editing from a transcript made from recordings of the lectures.

The speakers have not had the opportunity to read and

correct the final manuscript. Hence, we accept responsi-
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i. Gravitational Deflection of Light by a Non Relativistic

Method

The idea that light interacts with a gravitational field

originated more than a century ago. In 1905 Von Soldner (
l)

considered the deflection of light by the sun's gravitational

fi-_ _ __ .._.............. i _ ....._._ from the point u_ v._w uf the and

Newton's laws of motion.

Con__ _ "_"'_- 0

,_ _ s canee@_-e_t_n..t.he e1._uation of motion_-'t_

_ot[nee_t_e-_re_-y a_ w_alue of m we _t assign

t ___
o a photon_ __ugh the vicinity of a larger

where

mass M as shown in Figure i. Let the impact parameter be R.

We use rectangular coordinates, such that at infinity the path

of light is parallel to the X-axis and the deflection of light

occurs in the X-Y plane. The equation of motion is:

md_ - - GMm X (i)

d_ rs r

r a =x s +yS

If the deflection is small, then y_ R.

these substitutions equation (I) may be immediately integrated

to give :

d__- eMx I

(1) Berliner Astronomisches Ja_b. -

(2)

We write x = ct. With

(3)
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--The angle of deflection c_/ _^ y___n" _=_ "'-_ is:

>×

!

Figure I._-_\L_ (i'_ _ _ _

8 = =+_----'m_ (4)

This is one half the value predicted by Einstein a_d confirmed

by astronomical observations during total solar eclipses, The

disagreement in the two theories occurred because Von Soldner

used the wrong equation of motion. His equation is valid for

slow particles, but photons are not slow. We shall derive

Einstein's result in the following paragraph:

2. Relativistic Results

The geodesic equation _e

d__ + Fy dx_ dx V = 0 (5)
dsa Uv ds ds

F-__ 1___ht all interval- =_ _"_l. 4) is a parameter along

the path. We may choose s = x ° = ct. F_Sy is the Christoffel

symbol of the second kind. If we use isotropic coordinates,

ds s for the lowest order of departure from a Minkowskian

line element is given as:

- _ cSdt s-ds" _= <__ (dxa+ dy'+ dz') - <I 2G (6)

-2-



With this metric rY0x = 0, and to a good approximation

Equ_ion (5) becomes:

a.C_z o c7)
dx _ + FYo0 + rYxxc_

we have neglected terms involving the y component of velocity

since it is very small. From the definition of r _ and
BY'

Equation (6), we have:

F oo = - --I_-H_ = GM

2 By r--F_cs by

ar = GMy (e)
cs (x_+ y_)a/a

)'- - i _gxx GM 5r =

r - =

_r Z
where

_Y

then be computed:

.GMy (9)
c_TX_+ y_)3/_

• The deflection of light by a mass center may
r

d__ d
= - 4 G M (i0)

rc s

It is easy to see why we get an extra factor of 2. The

deflection is given t._9...contribution_o, f t_
by dentical

• "" '" 4.

terms r_00 and rYx x ._ _

_II_. In the classical theory, only one term is present (rYo0) .

At low velocity _I_Y_v _ << 9 _t v = c th_ _ibute

equally. We can say the photon acts as if it has a gravita'

tional mass twice its inertial mass_in 5l,i- c=___e_ •

3. Effect of the Photon Spin

Although in (2) we have taken into account the relativistic
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effect, we have not taken into account the spin of the

photon. The equations of motion for spinning particles are

somewhat different from the equations for spinless particles.

I shall only state the results. (2) The angle of deflection

is:

= _ (i - (11)
Rc s

if the spin of the photon is perpendicular to its direction

of motion. I is the wavelength of the photon. If the spin

of the photon is parallel to its direction of motion the

extra term _ drops out. However, from quantum field theory

we know that if the particle has zero mass, then its spin must

be parallel or antiparallel to its direction of motions there

are only two spin states for such a particle: full spin ahead

and full spin backward. Therefore, by this coincidence, the

effect of the spin disappears.

4. Gravitational Red Shift

This effect of gravitation on light has been discussed

many times. However, for completeness let me include a few

(2) Papapetrou and Corinaldisi, Proc. Roy. Soc. A209, 259, (1951)
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words about the red shift. In the case of the deflection of

light by the sun, the naive argument (Newtonian Mechanics)

does not lead to correct results even in the first order.

But for the red shift the most naive argument does lead to

correct results in the first order, using only the principle

of equivalence and the doppler shift law.

The principle of equivalence states that

AT

.1
Figure 2

insofar as local observations are concerned, the ef!fe_c_ of

a uniform gravitational field are indisti_.guishable from

those of an equivalent uniform acceleration field•

In Figure (2) the atom at A emits a photon of frequency

_. At some. later time t = _L (where __ is the distance

C

between the observer and the atom) the observer at B in the

equivalent accelerated frame detects the photon. Over this

time interval, t, the observer has undergone an acceleration

of g and at the end of this time interval has attained a velocity,

,TV •
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v = gt = g_ (12)

In the gravitational field we say this gives rise to the red

shift, in the equivalent accelerated frame we call it a

doppler shift. The change in frequency is therefore:

Here d_ is the change of gravitational potential, the potential

at the location of the observer minus the potential at the

location of the atom. (13) is the first order gravitational

red shift formula.

5. Comparison of the theories of Maxwell and Einstein

are

In the special theory of relativity the Maxwell equations

= - JU (14)oA u

where A u is the 4-potential and j_ is the current density.

There is a supplementary condition to Equation (14):

(15)

On the other

A u = 0
'U

Equation (15) is the Lorentz gauge condition.

hand, the Einstein field equations are:

RUv - ½ gu_ = KTu_
(16)

The two sets of field equations, (14) and (16), appear

quite different. In classical electromagnetic theory,

equations (14) describe the electromagnetic field in Minkowski
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coordinates. Charges and fields operate in a flat space, in

the Maxwell theory. In general relativity, the gravitational

field is a property of space and is characterized by the

geometry of the space. The presence of mass affects the

geometry. Motions of spinless particles subjected to gravi-

tational interactions are given by the geodesics in such a

space. It was therefore believed that general relativity

is fundamentally a different theory from electromagnetic

theory. In recent years this view has somewhat changed.

In a more general treatment of field theories, there

is a correspondence between the spin of the particle and

the rank of the tensor which describes the field. In the

case of the electromagnetic field, the photon has a spin I,

and a four vector is employed. It was shown by Pauli and

Fierz that a second rank symmetric tensor field is required

for relativistic wave equations for particles of spin 2. The

reason for this is the following.

five quantized spin orientations.

A particle of spin 2 has

Also there are two signs

for the energy corresponding to particle states and anti-

particle states. Hence we have a 10-component wave function

for a spin 2 particle, which corresponds to the components

of a second rank symmetric tensor.

--7--



Pauli and Fierz also showed that the relativistic wave

equations for free, massless particles of spin 2 are

oUu_ = 0 (17)

where UUv is the second rank symmetric tensor. The supple-

mentary condition was given by them (3) to be:

u ,v = 0 (18)

Suppose now that we introduce interactions. These may be

represented by some tensor 8_v. The field equations with

interactions are then:

oU_v = kS_v (19)

Here k is a coupling constant. The supplementary condition,

Equation (18), now implies that:

8 , v = 0 (20)

Since the matter stress tensor T_8 satisfies Equation {20i,

we might associate T@8 with @Uv" The appearance of the stress

tensor is to be expected in developing a theory of

gravitation, because stress and energy are the source of a

gravitational field. The gravitational field itself is

expected to contribute some stress and energy as well. We

(3) In this section we raise and lower indices by the Lorentz

metric, i.e., AU = 8_v
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use tuv to denote such stress energy.

equations are

0Uu_ = k(Tu_ + tuv)

Hence the field

If T_ = 0, the vacuum equations are obtained as:

(21)

DUu_ = ktuv (21a)

Eq '"_ % -Now .... shall _.- _^ obtain uation - from

variational principle. First we construct a Lagrangian

density L for the field. The method of constructing L is

described in standard textbooks on field theory. (4) The

Lagrangian density for a free field is:

,6

L = - ½ uUV,aUuv (22)

The action principle leads to the field equations

______L 5L
- 0 (23)

_x _ _UU_,_ _UU_ -

An object constructed from L and satisfying the conser-

vation law t_ = 0 is (5)

= 6u_ 'U 3UUB,_ 'uUa8 _U _ 'PUas'
tuv L - U a8 _L = Ua8 ,v _ i_ VTT_8 0

Equations (22) and (23) lead to the field equations

oU uv = 0 (25)

(24)

(4) See, for example: Landau and Lifshitz, The Classical

Theory of Fields, Addison Wesley.

(5) J. Weber, General Relativity and Gravitational Waves,

Interscience Publishers, New York and London, 1961,

page 73.

--9--
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This does not include interaction of particles with themselves,

according to (21a). We may obtain (21a) by adding a term fl

to the Lagrangian density (22), obtaining

L' = - ! UU_,_Uuv'_ + fi (26)
2

The addition of fi to (26) leads to a new expression for

which we denote by tu_ : so we requiretuv,

oUUV = t'U _ (21b)

In order to obtain (21b) we must add a term to (26). But

this leads to t'' _ which in turn leads to the requirement
U

that new field equations

DUUV = t'' V (21c)
u

By continuing this process a Lagrangian densitybe obtained.

with an infinite number of terms is obtained. Gupta (6) carried

these procedures through and found that this Lagrangian density

with an infinite number of terms is indeed equal to the cur-

vature scalar, the correct one required to de_ce the equations

of general relativity.

To summarize, the equations of general relativity can be

deduced by using the same philosophical notion_ as in other

field theories. We deal with particles with s_in 2, and

(6) S. N. Gupta, Phys. Rev. 46, 1683 (1954)
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recognize that energy is the source of the gravitational

field. The gravitational field itself contributes to part of

the energy density, which in turn is a source of gravitational

fields. This, then, leads to a non-linear theory, to a

Lagrangian density L with an infinite number of terms, from

which the curvature scalar can be obtained.

6. Electrodynamics in Arbitrary Coordinates and its Geometrization

Equations (14) and (15) are the four potential formulation

of electrodynamics, in Lorentz frames.

are given by

The field tensors F
Uv

axY ax _ ax a =

For any FUr defined in terms of a four potential by (27), _{29)

is satisfied as an identity in consequence of the vanishing of

W-VXA. In arbitrary coordinates (28) becomes

F_V;v = jU (30)

(7) In this section we use the metric tensor guy and its

inverse gUY to raise and lower indices.

-ll-

FUv'v = j_ (28)

and the Maxwell equations (7) for Fur are

FU_ = Av, u - AU, V (27}



We are using a semicolon to denote covariant differentiation.

Equation (29) becomes

( 8y6 6 = 0  311

In (31) ¢m876 is the Levi Civita tensor density, __z_ : i,

it changes sign on interchange of any pair of indices and van-

ishes if two or more indices are the same. g is the deter-

minant of gu_" Using the standard formula for the covariant

divergence of an antisymmetric tensor then gives a_ again _29)

as valid in arbitrary coordinates. Using the standard

formulas for covariant differentiation then lead_ to

A v,u - AU,V = A_;U - AU;v = FUr (32)

Making use of the generalized Lorentz gaage corditlon

Au: U = 0 '_33)

and the rules for changing the order of covariant differen-

tiation then reduces (30) to

;m Am = -Ju _34)A u; m - RUm

Here R_v is again the Ricci tensor. It seems from this that

electrodynamics fits very naturally into the scheme of general

relativity. But Einstein felt that this was not enough. Since

the geometrical interpretation of gravitation was successful,

he thought perhaps one ought to try to geometrize electro-

magnetism.
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Part of the motivation for the geometrization is the fact

that in general relativity the gravitational forces are entirely

taken into account by the geometry of the space, With electro-

magnetic forces, the spinless particles no longer move --long

geodesics, if they are charged.

For a long time it was believed that a partial geometri-

zation of gravitation and charge free electromagnetism could

be achieved by elimination of the Maxwell field tensor,- ,

from the coupled Maxwell Einstein equatior_. 7'hi_ can be

accomplished in consequence of some quite special properties

of the Maxwell tensor. These are

TC_C_ = 0

1
TuaTa _ = _ 6uVT_8 Ta_

T00> 0

These relations lead to the following equations

R= 0

1

R_SR8 a = _ 5aYRsTR _

(35'

(38)

_39_

(8) G. Y. Rainich, trans. Am. Math. Soc. 27, 106 (i927).

(9) C. W. Misner and J. A. Wheeler, Annals of Physics _,

525, (1957)
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1 I¢Sk_v = (40)

RCTRc7 ,a [ Rc'Ra' J ,8

The metric which satisfies these relations has as its source

the stress energy of a field satisfying Ma_ell's equation.

It was sho_ by Witten (I0) and independently by Penrose that

the required Cauchy data to integrate these equations may

correspond to more than one Maxwell field. This description

is therefore not unique. The Ma_ell tensor can:_ot be

eliminated without elimination of at least part of the

physics.

The attempts to achieve a complete geometrization (II) have

extended over many years. Men this program was began it was

believed that gravitation and electromagnetism comprised all

of physics. Now geometrization would have to knclude quantum

effects as well as the strong and weak interactions. The

extraordinary difficulty of such a program has resulted in

its abandonment by all but a very few mathematicians and

physicists.

(i0) L. Witten, Phys. Rev., 120, 635, (1960)

(ll) V. Hlavaty, Geometry of Einstein's Unified Field Theory,

P. Noordhoff Groningen, Netherlands, 1957.
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7. Quantization of the Coupled Maxwell Einstein Fields

Electrodynamics and Gravitation may be written in

Hamiltonian form and a quantization carried out in an

approximation scheme (12) • For weak fields we write

guy = 6U_ + huv {41)

We will use Latin letters for the space indices I, 2 and 3.

Coordinates may be chosen such that

guo = 6Uo {42)

With these assumptions the Hamiltonian for the coupled

Maxwell Einstein fields may be written in the approximate

form

H = H_ + H M + .r(hrs_r_s/_ - 2h_jF_Fdj6md d_x. _43_

In (43) Hs contains only the gravitational field variables

and momenta, _ contains only the Maxwell field _aziables

Ak and the canonical momenta _k- Let us consider the

interaction terms in (43), when the theory is quantized.

It is seen to be made up of sums of products, each con-

taining one gravitational field operator, and two Maxwell

field operators. This interaction implies that a photon

(12) See, for example, J. Weber and G. Hinds, Physical Review,

to be published.
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can decay into another photon and a graviton (Figure 3)

Figure 3

A careful study of this process shows that the matrix

elements for it do not vanish unless all three particles

propagate in the same direction. However, all three

particles have zero rest mass. Energy and momentum can

be strictly conserved only if all particles propagate in

the same direction. Therefore, this process cannot occur

except conceivably at extreme energy where strict conser-

vation of energy can be somewhat relaxed. By extreme

energies we mean energies >> 1028 electron volts. This kind

of process cannot therefore explain the red shift as a "tired

light" mechanism during the long propagation time from dis-

tant galaxies.

Further study of the interaction shows that we may

expect graviton production if photons are incident on a
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coulomb field or a magnetostatic field. The cross section is

very small. For a coulomb scatterer containing uniform elec-

tric or magnetic fields, with linear dimensions all large

compared with the wavelength of the incident photon the cross

section for this process is

s = GuA (44)
c 4

Here U is the energy of the scatterer, and 2 its linear

dimension in the direction of propagation of the photon. For

laboratory experiments the cross section appears much too

small. Thus, a cubic meter containing i0 _s ergs of electrical

energy has S_ i0 -s° cm 2 . A galaxy with a magnetic field _ i0 -s

gauss would have a cross secfion_102s cm2and convert roughly

one part in l0 Is of the incident photons to gravitons by this

process. We note the absence of Planck's constant in (44). The

interaction of two Boson fields has a classical limit and

this is expressed by (44).
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A _ wave is a wave in a long-range scalar field. The

question of the existence of these waves is probably the

most important part of the title of this lecture and the

part about which we can say the least. On the other hand

we can describe with reasonable confidence the basic prop-

%2--

relativistic invariance and the results of certain experimen-

tal observations. So we are in the unusual situation of

knowing more about the properties of this field than its

existence.

I shall briefly review some of these properties which

were discussed in Lectures VII and VIII. In those two

lectures a long range scalar field was introduced into

gravitation theory in order to modify general relativity in

such a way as to make it more compatible with requirements

of Mach's principle. In such a modified theory there are

two alternative mathematical forms which the equations may

take. In the first form matter behaves in an ordinary

fashion; that is, the rest mass and physical dimensions are

constant from place to place. But in this form the Einstein

field equations are not valid. In the second form of the

theory the Einstein field equations are valid but the scalar

field, instead of appearing as part of the description of
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the description of the gravitation, appears as an ordinary

matter long-range interaction which gives rise to non-

constant particle dimensions. For the first form, the

Jordan-type theory, the variational principle has the form:

r_
(i)

The first term, from which one obtains the field equa-

tions for the components of the metric tensor, contains the

scalar curvature, R, multiplied by the scalar field, _.

The presence of _ in this term is responsible for the

departure of these equations from the Einstein form. The

second term, involving only the matter Lagrangian L, yields

the usual geodesic equations for the motion of particles.

The last term gives rise to a wave equation for the scalar

field, _:

D%0 is the d'Alemtertian of _, T is the contracted energy

momentum tensor for all particles and fields, and w is a

dimensionless coupling constant for the scalar field.

w is of the order of magnitude of unity. A comparison

with observations suggests a value of approximately 6.

The gravitational constant, G, which does not appear
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explicitly in the variation principle is determined by the

value of _ (G _--_).

The second form of the theory can be obtained by a

transformation which corresponds to a redefinition of the

units. Under this transformation the unit of length is

changed by a scale factor which is a function of _ and

the variational principle takes the form:

The new curvature scalar, R, is obtained by a conformal

transformation on the old one. The new Lagrangian density

for matter, [., is modified due to the transformation of

units. Lq is the new Lagrangian density of the scalar

"matter" field. In this form of the theory, the Einstein

field equations for the components of the metric tensor are

valid but the equations of motion of particles are modified.

The scalar field enters as a long range interaction of matter

rathe_____r than as part_of the description of the gravitation

(hence the geometry). Physicallyu both forms of the

theory are equival___eent. However, for the purpose of discussing

waves, the second form given by Equation (3) is more con-

venient. It is easier to visualize the effects of an

ordinary long range matter interaction than the effects of

- 3 -



the complicated coupling between the _ field and the metric

tensor as given by Equation (i). The wave equation for

from Equation (3) is:

c" <.-_+2_')

(4)

In this form of the theory the mass of a particle is a

function of the variable, _e such that:

-_ (5)

where m0 is a constant. We may introduce this into Equation

(4) by writing the contracted energy momentum tensor of

matter:

-½
T -- "To_ (6)

where To does not contain _ explicitly. Then Equation (4)

become s :

C2.rr C__ -_- (7)

a( J_ (_) : c,"(s +-z_) To q,

An interesting property of this equation is that for

matter in a localized bound system, occupying a certain

fixed volume over a long time average0 the virial theorem

implies that T0_ -½ is the integral over the volume of the

, _-½total energy of this system. However To is not a

strictly conserved quantity in this theory. For example,
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for a radially oscillating star the integral of this quantity

over the star is an oscillating function of time. It

oscillates about a mean value which represents the total

energy of the star (Figure i).

/_&RarEb
COr,/'rR ,qrcE b E a/61_6 Y

mom_m)m T_/_SO_

i

/ \

/

\ /

AVE _a_

Figure i. Radially Oscillating Star Has an Oscillating

Contracted Energy-Momentum Tensor.

Such an oscillating star provides an oscillating mono-

pole source for radiation of _ waves which, in principle,

can be detected elsewhere in space. This would be a new

phenomenon which should not occur for the ordinary gravi-

tational field. It is a well-known property of general

relativity that a localized radially oscillating star

radiates no gravitational waves. This is because gravita-

tional radiation, according to general relativity, is
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polarized quadrupole radiation. A radially oscillating star

has spherical symmetry and cannot produce such polarized

quadrupole radiation. We shall return to this in connection

with the case of a collapsing star.

Another phenomenon associated with scalar monopole

..... -_-A_I _ _ _+,_'_ by Dieter _]] Wev-L.=_._.v_, waves _,_ _, __ __ __

considered the radiation from planets moving in elliptical

orbits. It is conceivable that monopole scalar field radia-

tion would be so strong as to provide a damping mechanism

for planetary motion that would be incompatible with

observations. A planet moving in an eccentric elliptical

orbit contributes to an oscillating contracted energy

momentum tensor integrated over the solar system (Figure 2).

/

/

!

l

\

\

\

!

/

/
J

Figure 2. Monopole Radiation for a Two Particle Gravitational

System
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Hence monopole waves should be radiated. However, it turns

out that this radiation is as weak as conventional general

relativistic radiation due to the oscillating quadrupole

moment of the solar system. The reason for this is that

the gravitation quadrupole moment, which depends on the

uns3.zmmetrica! distribution _f the total mass of the system,

oscillates through its full value. On the other hand the

oscillating part of the monopole source depends on the

relatively small variation in the kinetic energy of the sys-

tem due to the elliptical planetary motion. This kinetic

is of the order of _v/c)_times the total energy, whereenergy

v is the velocity of the planets: (v/c) e _ i0 -s. The quadru-

pole radiation rate is proportional to the quadrupole moment

times (v/c) 4. The monopole radiation rate is proportional

to the monopole moment times (v/c) _ Since, from the above

argument, the monopole moment is roughly (v/c)2times the

quadrupole moment, the radiation rate of a monopole is

roughly the same as that of a quadrupole.

A collapsing star might provide a much stronger source

of _0waves. The core of a star may collapse due to rapid

thermodynamic change of state which occurs at the end of

thermonuclear evolution. At present it is understood that

supernova explosions are triggered by such a collapse.
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During the collapse phase the quasi-state equilibrium state

of the core is destroyed suddenly and the material of the

star falls freely inward. The contracted mass energy tensor

T0_ -½ may change by as much as one hundred percent. The

energy of the star which could be radiated as a _ wave

where M is the mass of the star and R is the radius from

which it starts to collapse. This radius can be very small

since as the core approaches the critical mass, it shrinks

and becomes a degenerate star of a very small radius.

(For a fuller discussion, see Lecture X, "Degenerate Stars"

by J. A. Wheeler.)

perhaps even larger.

Gm/Rc a may be of the order of 10 -4 , or

So we expect at least a millionth of

the energy, perhaps much more, to be radiated in a wave of

this kind.

The fraction of energy radiated depends on the time

scale of the rapid collapse. An alternate way of writing

Equation (8) in terms of this time of collapse is:

where T is on the order of a few seconds.
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It is very difficult to find mechanisms in the universe

as it exists now for radiating any larger amounts of this

energy. Therefore, it would be difficult to believe that

there are sources for this kind of a field which would lead

to an energy density in space which is comparable to that of

_*-) .f_ _L .IL..i .L_ .L ._ ,LLLJ"l _,,. L q;_ J..

On the other hand if the universe has evolved from a

highly compressed state, it is possible that the early

evolution of the universe could have generated a large density

of %0 waves that could have persisted until now. This could

lead to a substantial part of the energy density of space

being in the form of scalar field waves.

The average energy density in scalar field waves is

related to the rate of change of the field in the following

way:

_L _ _+y_) C _ _ _ bz (IQ)

is the time derivative of the field _.

We can estimate the maximum possible value for (_/_)

by assuming the energy density of these waves to be the

average energy density required by the cosmological model

for the universe expanding at a rate given by the Hubble
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Constant. This energy density is about 10-2_g/cm s. Sub-

stituting this into Equation (10) gives:

_IO years (Ii)

This is an average fractional change in the field of order

of magnitude of one part in i0 l° per year. Hence, if this

energy density is relatively uniformly distributed, its

effects would be very small and extremely difficult to

observe. However, it is not clear that it is necessary to

assume uniform distribution.

The reason for this is that the non-linear character

of the wave equation (Equation (7)) provides some mechanisms

that tend to sharpen wave fronts. This can be seen quali-

tatively in the following way.

Figure 3.

"I'IIW E

The Sharpening of a Wave Front as a Wave Passes

Through Matter.
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Figure 3 (a) shows _ at a point in space as a wave front.

As this wave passes through matter so that the local value

of _ is increased, the energy associated with the matter is

decreased as a consequence of the dependence of the mass of

particles on _ (Equation (5)). Since the total energy is

wave front. A more detailed analysis suggests that in

this process the wave front can be sharpened.

Another interesting effect of a _ wave passing through

matter is the _-wave maser. This might operate on the scale

of a galaxy. In a galaxy of some i0 _° hydrogen burning stars

many of these are in the white dwarf stage for which the

core size is approaching the critical Chandrasekhar limit

beyond which they will undergo unstable collapse. A slight

increase in the gravitational constant would lower the

critical mass so that all those stars that were nearing the

collapse point would suddenly have exceeded it and as a

consequence begin an unstable collapse. This collapsing

star then radiates a _ wave contributing to the strength of

the wave front, as previously described. Thus we can

visualize a _ wave passing through a galaxy initiating the

collapse of many white dwarf stars which then contribute

wavelets to maintaining and strengthening the wave front.
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Conceivably this model could be used to explain asso-

ciated production of supernova which has been postulated as

an explanation for the very intense observed radio sources.

However the necessary calculations have not been made.

These sources appear to be radiating energy at a rate too

_- _ 1_ el;_ 4-_ c_ _1_ __7_ T_ ' _ _-_
_v a _ l _ ++. _=_y _v

assume a large number of supernova to produce radio sources

this strong. Burbidge has argued that in the center of the

galaxy there are many stars which have reached a critical

state, about ready to become supernovae. By chance one goes

off and produces a shock-wave that sets others off. Unfor-

tunately, it has never been made quite clear how one super-

nova would set off another.

The _ wave model provides a possible mechanism for

associated production of supernova. A galaxy with 10s or

i0 s stars about ready to explode encounters a _ wave in the

form of an extraordinary large bump in the gravitational

constant. All those stars that are ready to go, go all at

once. This stirs up the gas sufficiently to provide a very

strong radio source.

There is another rather interesting effect which can

occur to a degenerate star which has a mass very near the

critical mass. Under these conditions its equilibrium radius

- 12 -



and energy are a very sensitive function of the gravitational

constant. A change in perhaps one part in l0 s of the

gravitational constant could affect the total energy to the

order of one percent or so. If such a greatly contracted

star were intercepted by a _ wave corresponding to a

............. D, ..... J _ v v _._ t,.,L...,, ,,.,[ .L,.,,,.._ ..L .._.. ,,.4..Lj i....,,..,, ..L _ o. t...L 1 ../. I.... ;D 11_:_ W

equilibrium size, and to do so would absorb some energy from

the _ field. On the other hand, if the _ wave corresponded

to an increasing gravitational constant_ then it would cause

a further contraction and decrease in energy of the star.

In this way the equilibrium energy of the star could be a

rather sensitive function of the _ field. If the wave front

were sufficiently sharp so that the star could not follow

the change in _ quas_-statically through a series of equili-

brium states, the star might pulsate for a while about the

new equilibrium state after the wave front has passed. This

could lead to _ wave radiation.

We have been speaking mainly of the effects of single

wave fronts without being concerned with what frequency

range would characterize these waves. It is difficult to

say what this range should be. The mechanisms for production

of _ waves are not likely to be on the atomic scale. The

coupling strength of this field is of the order of 10 -40 of

other atomic coupling strengths. Hence competing radiation
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and energy exchange processes would rule out significant

wave radiation on an atomic scale.

More likely mechanisms for _ wave radiation involve

coupled phenomena where many particles move together.

Systems of particles as large as the sun do not move together

.._i .... _^.. ti ly ly m_ .... _I ^ i ......

limit for the period of _ waves is given by the free fall

time of a degenerate star. This time is in the range of

seconds. However, if the main source of _ wave radiation

occurred at the time the expansion of the universe started,

this radiation would have been red shifted ever since and

periods of seconds might have been shifted into hours or

days. Other processes could have produced waves with periods

now of the order of 10's of years. We really do not know

the period to expect for _ waves except that the range of

hours to tens of years might be in a reasonable range.

It appears that if such fields exist they could have

some interesting effects on galaxies and stars. Another

interesting question is whether a field of this kind would

have effects on the solar system for which we have precision

observations. To be able to say that the field exists on

the basis of what one sees in the solar system is I think

extremely unlikely. The earth and the planets are suffi-

ciently complicated so that there are usually alternative
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explanations for the small effects we may observe. However,

we can determine what the implications of _ waves impinging

on the solar system would be, and then ask whether we can

rule out a field of this kind on the basis of what we see.

As a starting point I am going to assume the largest

rate of G variation _ -'-_ _ .... _ _^_4_ _,,

present methods of observation. This rate corresponds to

a fractional change in one year:

_ _0- _ (12)

This variation is considerably larger than that due to the

secular rate of change of _ of the order of 3 parts in i0 II

associated with the cosmological solution of the scalar theory

for an expanding closed universe (Lecture VIII). In fact,

if space were filled with a _ field whose time rate of change

corresponds to this variation in G, the energy density of the

field would be 10 4 times that permissible on astronomical

grounds (Equation (9)). Hence on the average no more than

10 -4 of space can be filled with _ waves of this strength.

Thus the a priori probability of such a wave impinging on

the solar system in any given year is i0 -_. This is a small

probability. Its major significance is that we cannot rule

out the existence of _ waves on the basis of a lack of
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observation of the effects of a _ wave of this strength.

Furthermore, if we cannot rule out a G variation this large

by observation we certainly cannot rule out a more reasonable

smaller variation.

What are the effects of strong _ waves on planetary

__ F_ _ne thing, the ecr_n__y of _ planetary orbit

would be changed by the passage of a _ wave front (Figure 4).

For example, if the _ wave causes a sudden decrease in G for

some position (A) of the planet in a circular orbit, the

planet will continue its motion in a new eccentric orbit, _B).

The variatioh in eccentricity that would be expected:' from a

change in G over a time short compared with the period of

revolution of the planet is of the order of i0 -s with the

above assumptions. We expect about 10 -4 such disturbances

per year. In the 4.5 x 10 9 years that the solar system has

been in existence, there would have been of the order of

4.5 x l0 s such jumps in the eccentricity. These should occur

as a random walk. So that the expected departure of the

eccentricity of a planet, initially in a nearly circular

orbit, over l0 s years would be

_6 1/ -(_"" d, ExlO s" _ IO- e _ "? x/o (13)
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This is much smaller than the planetary eccentricities

which are observed so that this effect does not rule out

the existence of _ waves. Nor have I found any effects

which would have affected the forms of orbits in the solar

system sufficiently in historical times to be ovservable.

Figure 4.

A

Effect on Planet Orbit of Abrupt Change in G.

On the other hand there are uncertainties, variations,

or systematic discrepancies in planetary orbits that are

not understood, and for which no one has an explanation.

The fact that the orbits do not follow exactly what one

predicts from conventional theory is a loophole for allowing

disturbances of this kind to exist. For example, Clemence

has pointed out that there seems to be a correlation in the

residuals in Saturn's orbit and in Jupiter's orbit. It

would be interesting to see whether these correlation

effects could be tied to a common cause.

We may also ask about the effects of _ waves for which

the gravitational constant changes over a period which is

long compared to the orbit period. With such a slow
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(adiabatic) change, the orbit merely breathes in and out

without changing its eccentricity. The most interesting

place to look for an effect of this sort is with the moon's

motion. If the gravitational constant were to have changed

slowly by one part in l0 s over 200 years, the moon would

move now at a new rate compared with an atomic _l_ck.

Unfortunately we haven't had atomic clocks over the last

200 years. However, we can compare the moon's motion with

the earth's rotation over this period of time.

Figure 5.

i0

, l I

b

17_0 t%_ 1900

Discrepancy in the Moon's Longitude Relative

to the Earth's Period

Figure 5 shows the lunar discrepancy curve over the last 200

years. The difference between observed and calculated

positions are plotted in seconds of arc. The origin is

arbitrarily chosen for a zero discrepance at 1870.

In addition there is an arbitrary constant which establishes
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the initial ratio of the moon and earth 'clock' rates.

It can be used to eliminate a linear term in the curve.

The remaining wiggles and curvature are real and cannot be

removed by an arbitrary choice of constants.

The points prior to 1900 fit quite well to a parabolic

curve. This represents a uniform acceleration ov_ +_

period with some wiggles superimposed on top of it. The

really remarkable disturbance occurred rather recently in

1900, while fairly good observations of all kinds were

being made. At this time there was a big bump in the dis-

crepancy curve. One can interpret this particular bump in

two different ways. One is to say that the rotation of the

earth changed slightly. The other is to say that the period

of the moon changed. I will describe the disturbance in

terms of a change in the moon's period. That is, I will

assume the moon started going around the earth at a

different rate for a while and then it returned to its old

rate.

Before doing this I will comment on whether the earth

could have changed its rotation rate by a sufficient amount

to account for this bump and how this could have happened.

This question has been discussed rather completely by
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MacDonald and Munk (I) . It is an historically old problem

with which many astronomers have been very much concerned

even before this very large discrepancy in 1900 was observed.

To illustrate the extent of the problem I will read a state-

ment made by the famous orbit astronomer, Newcomb, in

l qOq (2) _nrl _r_1-_rl hv MacDonald and M,I_,

"I regard these fluctuations as the most enigmatical

phenomenon presented by stellar motions, being so difficult

to account for by the action of any known cause that we

cannot but suspect them to arise from some action in nature

hitherto unknown."

Then MacDonald and Munk point out that "Sea level

variations, continental unrest, melting on Antarctica and

other observable processes cannot possibly be the cause.

The only known hope is the core; we have arrived at this

conclusion by what Sir Edward Bullard has called the Sherlock

Holmes procedure, of eliminating one possibility after

anothe r. "

(i) G.J.F. MacDonald and W. H. Munk, The Rotation of

the Earth, Cambridge (1960).

(2) S. Newcomb, Fluctuations in the Moon's Motion,

Monthly Notices, Royal Astronomical Society, 6__9, 164

(1909) .
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To account for such a large change in the earth's

rotation rate requires unreasonably large disturbances on

the earth. For example, the level of the sea would have to

have changed by a meter to account for this change in the

earth's rotation rate.

A further difficulty in _ri!ing this v_+_on

with known causes is the fact that the earth's pole did not

change its location appreciably in this period of time.

For example, the explanation in terms of a change in the

ocean level of one meter due to melting of ice in

Antarctica would have resulted in the North Pole of the

earth moving some i00 to 200 feet from where it was. This

is because the Antarctic ice is not distributed symmetrically

about the earth's axis of rotation. The stability of the

position of the earth's rotation axis over recent times

requires that any mechanism postulated to cause a change

in the moment of inertia of the earth by the necessary

amount be so symmetrical as not to change the rotation axis.

Another possible cause for a change in the earth's

rotation rate is a change in the angular momentum carried

by the atmosphere. Unfortunately, this is roughly two orders

of magnitude too small to account for the observed change in

rotation rate.
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Could it be due to continental blocks moving up and

down? We know roughly how much continents are moving

vertically from observations of sea levels variations.

These motions are also orders of magnitude too small to

produce the necessary effect on the earth's rotation rate.

Furthermore, an explanation in terms of continental blocks

moving would again run into trouble with the motion of

the earth's pole.

Of all the effects that could occur near the earth's

surface, nothing really fits. The only remaining possibility

seems to be a possible change in the angular momentum of the

earth's core. This is quite difficult to get at.

But there is some evidence that the magnetic field of

the earth, which is presumed to be connected with currents

in the core, has been drifting from east to west. Also,

there is some indication that there was a change in the rate

of drift of the magnetic field at the time of the large

bump in Figure 5. Thus through some way not understood in

detail there could have been a transfer of angular momentum

to the earth's core to change its rotation rate.

Now I would like to turn to the possibility that the

discrepancy is at least in part due to a variation in the

moon's period. It is interesting that the change in the
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period in 1900 of four parts in l0 s is even greater than

the rate of change considered in the above discussion of

the effects of _ waves. It would be difficult to exclude

a variation of G accounting for at least a part of this

discrepancy. It is even possible that a _ wave could

account for all of the 1900-1920 disturbance=

This raises the interesting question: If this were

actually a change in the moon's motion due to a change in

G rather than a change in the earth's rotation, what other

effects would be expected to be associated with this?

We have concluded that one rather sensitive test for a

variation of G is the frequency of earthquakes. The reason

for this is the following:

Stresses across a fault plane in the earth build up

slowly through normal tectonic processes. Lateral displace-

ments of the order of one centimeter per year occur.

Figure 6.

-9

Illustration of the Inhibition of Earthquakes

Along a Fault Plane Due to Normal Stresses.
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The dimensions of a fault plane may be of the order of a

thousand kilometers, with strains building up at the rate

of one part in l0 s per year. These strains continue to

build up until the strength of the material is exceeded.

Then the material flows or slips along the fault plane and

earthquakes are produced.

It is clear from Figure 6 that the normal stresses

across the fault plane will influence the ease with which

motion along the fault plane can occur. Thus small changes

in the normal stresses can provide a trigger mechanism for

initiating or inhibiting earthquakes. If G were to become

a little smaller, the earth would expand slightly and these

normal stresses would get smaller regardless of the orienta-

tion of the fault plane. If G were to vary by the order of

one part in l0 s in a year, the resulting expansion of the

earth would be of the order of a tenth of that, about one

part in l0 s . However, the stresses along the fault planes

are accumulating of the order of one part in i0 s in a year.

So the variation of normal stress is quite appreciable in

comparison with the rate at which the stress is building up.

Thus the determination of whether an earthquake should go or

not can be rather strongly affected by a variation of G

of that order of magnitude.
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What effect then on earthquakes would we expect to be

associated with the bump on the moon-earth rotation dis-

crepancy curve in 1900? If at that time the moon started

to move more rapidly, this implies that G became larger.

This would make the normal stresses larger, having the

effect of turning off earthquakes. About twenty years 1_t-,_-

G becomes smaller again; normal stresses become smaller and

the earthquakes should occur more frequently. So we expect

a period of 20 years with a low earthquake rate, followed

by an enhanced earthquake rate during the period following

a decrease in G.

The upper curve in Figure 7 shows the variation of the

frequency of earthquakes over this period of time. Indeed,

this data shows a very low earthquake frequency, followed

by an enhanced frequency coinciding roughly with the bump

in the curve in Figure 5. This coincidence encourages us

to examine the comparison between the earthquake rate and

the moon's motion in greater detail.

The lower curve in Figure 7 shows the year by year

average of the moon's motion. The moon's motion is much

more noisy in this curve than in Figure 5 because it has

not been smoothed to the extent of the previous graph.
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The data for the period of time from 1904 to 1952 was

obtained from seismometers observations* and for the period

prior to 1900 from newspaper reports. There is no imme-

diately apparent correlation prior to 1900 between the

newspaper reported earthquakes and the moon's motion.

On the other hand i do not expect newspaper reports to be

a source of information with a good signal to noise ratio.

Rather I expect them to be rather poor.

One of my students, Jason Morgan, has calculated the

correlation between earthquake frequency and the dis-

crepancy in the moon's motion during this period. The

correlation coefficients all have the right sign and have

a reasonable significance level. He found the calculated

correlation coefficient prior to 1900 is 0.26. The prob-

ability of obtaining a correlation that good by accident

with random numbers is only of the order of three percent.

The correlation for the period after 1900 during which the

earthquake data is from seismometer observations is 0.71.

The probability of getting this value accidentally with

random numbers is very small, approximately I0 -s.

* All earthquakes of magnitude M _ 6.5 is listed in

B. Gutenberg and C. F. Richter, Seismicity of the Earth,

2nd ed., Princeton University Press, 1954.
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Morgan examined in detail the data since 1900 to see

where the correlation arises. Is it in only the low frequency

fluctuations or are the high frequency variations meaningful?

There are several very large bumps in the moon's motion on

the lower curve in Figure 7. We might ask whether these

big bumps correlate with bumps on the upper curve. It turns

out that they do.

The analysis was made by fitting a cubic curve to these

two plots and then subtracting the cubic off in order to

leave only the "noise" fluctuations for which a correlation

is computed. These two difference curves are shown in

Figure 8. The cubic curves correlate very nicely with each

other with a correlation coefficient of 0.94. The remainder

correlates to the extent of 0.20. The probability of

getting that kind of correlation with random numbers is

eight percent. Thus all the correlations have the same

sign and they are all reasonably above the level for which

we would expect to get them through accident. These cor-

relations fit very well with the hypothesis that (I) the

disturbances on the earth-moon rotation rate discrepancy

curve are associated with variations in the moon's period;

(2) these variations and the variations in earthquake rates

have a common origin in fluctuations of the value of the
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subtracting cubic curves.
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gravitational constant; and, (3) this could be caused by

the passage of _ waves.

We may also ask the question whether the correlations

fit the hypothesis of undisturbed motion of the moon and

variations in the earth's rotation rate of some unknown

origin, i believe that they can be made to fit but not as

convincingly as they fit the hypothesis of irregular moon

motion. If the earth changes its rotation rate in such a

way as to speed up, there is a centrifugal expansion of

the earth and a release of strains. The normal stresses

become smaller by one percent of the fractional change in

rotation rate (since centrifugal forces account for about

one percent of g at the surface of the earth). If we wish

to say that this is the mechanism for the strong correlation,

then we must assume that earthquakes are extremely sen-

sitive to small variations in normal stresses. However

the fractional change in stresses produced in this way is

only of the order of 10 -1° which is about 10 -3 of the tidal
q

variation in Stresses. Hence the tital effects would appear

to dominate and mask any small effects of a varying earth

rotation rate.

Another possible mechanism for the correlation in

earthquake rate with the earth rotation changes is the
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variation in sheer stresses between the core and mantle.

But if this were the case, the maximum earthquake rates

should occur when the augular velocity of the earth is

changing, rather than when the moon's angular velocity is

a minimum as appears to be the case.

In the last few years there has been a very promising

source of data on the subject of variation in earth

rotation rate. This is the comparison of the earth's

rotation rate with atomic clocks. As yet this comparison

has not been made for a sufficiently long period of time

to have any correspondingly good measure of the moon's

motion. This is because the observation accuracy on the

moon is so poor and its period so much longer than that of

earth rotation that it is necessary to average data over a

long period of time to achieve much accurately. So short

term data on the moon's motion is extremely noisy and is

not of much use in comparison to the very precise current

measurement of the earth's rotation rate.

A change in the gravitational constant should have a

small effect on the earth's rotation rate. As G decreases,

the earth expands. The compressibility of the earth is such

that the effect of a changing G on the earth's rotation rate

ought to be about one tenth of the effect on the moon's

motion. Morgan has looked at the correlation between
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earthquake rates and changes in the earth's rotation deter-

mined by comparison with atomic clocks over the past six

years. He has found a correlation which has the same sign

as previous correlations provided the effect is interpreted

in terms of a changing G. But it has the opposite sign if

the effect is interpreted in terms of a changing G. But it

has the opposite sign if the effect is interpreted solely

in terms of the earth's rotation.

While this and the previous effects discussed do not

prove the existence of _ waves and the consequent G variations,

they do provide a tantalizing invitation to explore further

the hypothesis of scalar gravitational waves. They certainly

do not give us grounds for rejecting the possibility of

their existence.
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editing from a transcript made from recordings of the lectures.
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H. Y. Chiu

W. F. Hoffmann



1. Introduction.

Whether or not the electron charge magnitude exactly

equals the proton charge magnitude is an interesting and

fundamental question in physics. In this lecture I should like

to discuss the theoretical arguments on this question, some

implications to physics, astronomy and cosmology of a slight

departure from charge equality, and the most recent experi-

mental determinations of the electron-proton charge ratio.

As you know, experimental findings of the late 19th and

early _0th centuries culminating in Millikan's oil drop

experiment led to the conclusions that electric charges occur

always as integral multiples of a smallest unit, and that the

smallest unit for positive charge (the proton) is equal to

the smallest unit for negative charge (the electron). Thus

an atom or molecule which consists of equal numbers of electrons

and protons should be electrically neutral. In 1932 the neutron

was discovered and it was found to have zero charge. By now

there are some 30 so-called elementary particles known, and

each of these appears to have a charge of +i, 0, or -i electron

charge unit.

2. Implications of a Charge Difference.

Ideally elementary particle theory should predict the

observed spectrum of the elementary particles including their
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charge and mass ratios. Modern quantized field theory can

describe discrete particles but cannot predict the values

of a particle's mass and charge. These must be obtained

from experiment. The invariance of the theory under charge

conjugation (the interchange of particle and antiparticle)

does provide a theoretical prediction that a particle and its

antiparticle should have charges which are equal in magnitude

but opposite in sign. For example, the electron and positron

charges should have the same magnitude. Also the proton and

antiproton charges should have the same magnitude. However,

theory does not predict the ratio of the magntidues of the

charges on two different particles, for example, the ratio

of the electron to proton charge.

Indeed in view of modern charge renormalization theory

the question of the electron-proton charge ratio becomes

rather deep and somewhat ambiguous. If the bare charges of

the electron and proton were equal, then conventional renormal-

ization theory with gauge invariance would require that the

renormalized electron and proton charges should also be equal.

(i)
However, Gell-Mann and Nambu have remarked that if in

(i) M. Gell-Mar_, Proceedings of the Tenth Annual International

Conference on High Energy Physics (Interscience Publishers,

Inc. New York (1960), p.792.
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addition to the photon there were another neutral vector particle

_

which is coupled to the proton but not to the electron, then

even though the bare charges of the electron and the proton

were equal, the renormalized charges would be expressed in

terms of ambiguous, quadratically divergent integrals and might

not be equal.

Feinberg and Goldhaber (2) have discussed the connection

between the conservation laws and charge equalities of particles.

At present the absolute conservation laws of charge, baryon

number, and lepton number are all independent and are believed

valid for any particle reaction. Because of the independent

conservation laws for baryons and leptons, use of charge conser-

vation in the known reactions involving elementary particles does

not of itself determine the ratios of the charges of all the

elementary particles. For example the apparent absence of the

reaction p - e+ + n° leaves the ratio of the electron to

proton charges undetermined. Conversely, if the electron

(lepton) and proton (baryon) charge magnitudes were different,

then the absence of such a reaction, or, more generally, the

conservation of baryons would follow from the conservation

(2) G. Feinberg and M. Goldhaber, Proc. Natl. Acad. Sci. U. S.

4....55, 1301 (1959).
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of charge instead of being an independent principle.

In the 20th century there has been considerable specu-

lation about the effect on large-scale matter of a slight

difference, 6q , in the magnitudes of the electron and proton

charges. Questions have been raised concerning the _effect of

such an inequality on gra%__tation, on the magnetic fields of

astronomical bodies, and, recently, on cosmology.

As to the relevance of charge inequality to gravitation

it is suggestive to compare the electrical force between two

protons to their gravitational force. This ratio is:

e2/r 2
Fel" = • = 1.2 x 1036 (i)

Fgrav. Gmp 2 /r2

which is, of course, a very large number. If the electron

charge is qe = -e and the proton charge were a slightly

different magnitude,

qp = (i + y)e

then the charge on the hydrogen atom would be +ye, and the

ratio of the electrostatic force between two hydrogen atoms

to their gravitational force would be

(2)
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Fel ° (ye) 2

- = 1.2 x 1036 y2 (3)
Fgrav. GmH2

This ratio is 1 when y = 0.9 x 10 -18. Hence if there were

1 part in 1018 difference between the proton and electron

charge magnitudes, then the electrostatic force h_tween two

hydrogen atoms would be equal in magnitude to the gravitational

force.

The very large ratio of electrical to gravitational

forces and their similar dependence on the inverse square of

the distance between the particles suggest the possibility

that gravitational forces might arise due to some small

breakdown of the normal theory of electrical forces. Lorentz

proposed that the gravitational force might arise because of

a slight difference between the force of repulsion between

two particles with charges of _the same sign and the force

of attraction between two particles with charges of the same

magnitudes but of unlike sign. Swarm (3) has also discussed

this possibility and has considered it in connection with

matter and antimatter.

(3) W. F. G. Swann, Phil. Mag. 3, 1088 (1927)7 Astrophysical

J. 13___33,733 (1961).
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The origin of the magnetic fields of astronomical bodies

is another problem for which the possibility of a slight charge

difference may be relevant. Einstein (4) remarked that a slight

difference between the proton and electron charge magnitudes

would, of course, lead to a net volume charge for matter composed

of equal numbers of protons and electrons. Hence a rotating

object such as the earth would have an associated magnetic

field similar to that of a magnetic dipole. At the pole the

field would be given by:

where

dipole moment:

Hpole = 29/R 3 (4)

R is the radius of the earth and P is its magnetic

p _ 0.2 WMR 2 o (5)

C P

where w is the angular velocity of the earth, M is the

mass, s is the charge density and P the mass density.

For a proton charge given by equation (2)

a ye

P mH (6)

where mH is the mass of the hydrogen atom. If we assume

that the earth's magnetic field of 0.6 gauss at the pole is



entirely due to this charge inequality, then y = 3 x 10-19 .

Blackett (5) observed in 1947 that the ratios of the

magnetic dipole moment .as computed from equation (5) to the

angular momentum for three astronomical bodies--the earth,

the sun and the star 78 Virginis--have nearly the same value

of

P - i.i x 10 -15

\_ earth, sun, star (7)

Furthermore, the ratio of the orbital magnetic moment

to the orbital angular momentum for an electron is

P electron orbital motion - e -_ 0.9 x 107

I 2meC
(8)

and the ratio of these two quantities is

(P/I) astronomical bodies _ 10-22 (9)
(P/I) electron

This dimensionless ratio is nearly equal to the dimen-

sionless constant

G% me 10_22
= 4 x (i0)e

Blackett considered it unlikely that this approximate numerical

equality should occur accidentally. Therefore he proposed that

it should be true in general that

i

(5) P. M. S. Blackett, Nature 15___9,658 (1947).

--7--



(P/I) astronomical body = (P/I) electron G½ m e = G½

e 2c

(ii)

It was found subsequent to Blackett's paper that the

magnetic field of the sun is nearer to 1 gauss than to 50

gauss which was the value he used, so the ratio P/I for the

sun actually does not have the value given in equation (7).

There are many more stars whose magnetic fields have been

determined by now and it would be interesting to compare these

new data with equation (11).

The relation (11) is consistent with the model of a

rotating charged earth that Einstein proposed. However, the

simplest model of a rotating charged body gives very much

too high an electric field at the surface of the earth so

that the theory must be modified to include surface charge

as well as volume charge in order to give a reasonable value

for the electric field as well as for the magnetic field.

A third general area in which an electron-proton charge

inequality might have some interesting implications is

cosmology. Lyttleton and Bondi (6) suggested that the observed

expansion of the universe might be understood in terms of a

slight charge difference as an electric repulsion.

(6) R. A. Lyttleton and H. Bondi, Proc. Roy. Soc. A 25___2,313

(1959).
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They discussed this suggestion first in the context of

simple Newtonian theory using the model of a smoothed out,

spherical universe composed of hydrogen atoms with a mass

density a and a corresponding charge density _ , where

and y is assumed to be positive. (See Figure 1.) The

electrostatic force on a hydrogen atom at a distance r

the center of this charge distribution is

Fel" = (Ye) 2 Mr

r 2 mH

where M r is the total mass within the radius r.

The gravitational force is

F = Mr mHG

grav. r2

(6)

from

(12)

(13)

We define the ratio of the electrostatic repulsive force to

the gravitational attractive force to be

%

(1.12 x 1018 y)2 i(14)

which is the same as equation (3). The net repulsive force

is then

-9-
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F = Fel" -Fgrav. = (_- i) Fgrav.

4 np Gr = kr (15)

If _ - 1 > 0, there will be a repulsive force which is pro-

portional to r and which will lead to an expansion of the

uni vet se.

In order to achieve constant matter density in the universe

despite the expansion, Lyttlet_n and Bondi propose the continuous

creation of matter (hydrogen atoms) and hence necessarily

also then the creation of charge. They propose a modification

of Maxwell's equations to allow for the nonconservation of charge

and solve the problem of a steady-state expanding universe

with mass and charge creation. They obtain the following

relationship between the mass density

T-I , and the rate of matter creation

P , the Hubble constant

Q :

Using

p = 1
-_ mH Q T. (16)

T = 3 x I017 sec and % = l0 -29 gm/cm 3, they obtain

Q = 6 x i0-23 H atoms
3

cm -sec

which corresponds to a creation rate of one hydrogen atom

-Ii-



per second in a cube of 250 kilometers on an edge.

With constant matter density P the repulsive force

given in equation (15) is consistent with a velocity which

increases linearly with distance

v = 4KK r

where

K 4 n_ G
(U- i) -_

The observed expansion of the universe is

v = r/T

Equating (17) and (18)gives

(17)

(18)

T = 1
4

['(_.- I)"_'P G] ½

(19)

and hence _ = 5

and y = 2 x 10 -18. (20)

This is the charge inequality that Lyttleton and Bondi

proposed to explain the observed expansion of the universe

with a theory in which they allow for charge creation and a

modification of Maxwell's equations. They also formulated

-12-



their theory in the more general terms of de Sitter space-

time to satisfy the cosmological principle that the universe

appears the same as viewed from any position. The more general

theory introduced no essential modifications of the basic con-

clusions of the Newtonian picture.

When ionization occurs, electrically neutral units will

grow from the background of smoothed-out, un-ionized matter.

These units are identified with galaxies or clusters of

galaxies. Ions--primarily protons--which are expelled from

these units by the electrostatic forces are identified with

the hard component of the cosmic rays.

Hoyle (7) pointed out an error in the treatment of the

modified Maxwell theory of Lyttleton and Bondi. The principal

difference in conclusion reached by Hoyle is that the potential

due to a charge will be of the form

_ = _er cos _(-I)½ r] (21)

where r is the distance from the charge and

cosmological quantity

(_k)% = 1
Radius of the Universe

1 is a

(7) F. Hoyle, Proc. Roy. Soc. A 25___7,431

-13o
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From equation (21) it is clear that the potential will change

sign at sufficiently large distances, and thus the force between

two like charges will change from repulsive to attractive.

Hoyle's interpreation then is that the electrostatic

force would not be repulsive on a cosmological scale and

I_A _^ _,,_v_e in the manner T._I^_^__ _ an expansion of the "--".....

and Bondi proposed, but would rather be primarily attractive.

Hoyle noted however that if matter and antimatter are both

created at the same rate, if a hydrogen atom has a charge

ye , and an antihydrogen atom a charge -ye , and if matter

and antimatter become sufficiently separated, then repulsion

of matter and antimatter will occux according to equation (21)

and expansion of the universe would occur. Hoyle's theory

also requires that y __ 2 x 10 -18 .

3. Experimental Evidence on Charge Difference.

Now I would like to discuss what terrestrial laboratory

experiments have established about the electron-proton

charge difference.

One of the earliest experiments was the Millikan oil

drop experiment (8). Millikan studied the motion of droplets

of various liquids which had been charged by different means

(8) R. A. Millikan, The Electron (University of Chicago

Press, Chicago, 1917), 1st ed. pp. 80-83.

-14-



such as by friction, by use of x-rays, or by capture of ions

from the air. From the observation of the motion of these

droplets under the forces of gravity, of viscous drag, and

of an electric field, Millikan was able to show that in all

cases every droplet had a charge which was an integral multiple

He studied charges of both signs and heof the smallest unit.

found that

positive charqe unit

negative charge unit
: i _+l/lSOO

A macroscopic interpretation of this result can be given

in terms of the electron-proton charge difference (9). A

typical oil droplet is a sphere with a radius of about 10 -4

cm and a density of 1 gm/cm 3. The number, N , of proton-

electron pairs in one of these droplets is then

N __ 2.5 x 1012. Millikan's observations require that

Nye < e/1500

and hence

y < 3 x 10 -16

Another macroscopic experiment by a gas efflux method

(9) V. W. Hughes, Phys. Rev. 76, 474 (1949)

170 (1957).

-15-
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was first done by Piccard and Kessler (4) and will be discussed

i ater.

I should like to discuss next an atomic beam experiment

which has recently been done by Zorn, Chamberlain, and

Hughes (i0, 11, 9). The method of the experiment is to

study the deflection of a molecular beam iLL _ homogeneous

electric field. If an atom is neutral, it will not be

deflected, but if there were a difference between the electron

and proton charge magnitudes then an atom would have a net

charge and it would be deflected.

We used a classic molecular beam technique (12) as

illustrated in Figure 2.

(10) J. C. Zorn, G. E. Chamberlain and V. W. Hughes, Bull.

Am. Phys. Soc. 6, 63 (1961); Proceedinqs of the Tenth

Annual International Conference on Hiqh Enerqy Physics

(Interscience Publishers, New York, 1960), p. 790.

(11) J. C. Zorn, G. E. Chamberlain and V. W. Hughes, Bull.

Am. Phys. Soc. _, 36 (1960).

(12) P. Kusch and V. W. Hughes, "Atomic and Molecular

Beam Spectroscopy" in Handbuch der Physik 37/1.

S. FlSgge, ed. (Springer-Verlag, Heidelberg, 1959),

p. 6.
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The beam is defined by a source slit and a collimating slit

so that it has a ribbon-like cross section which is narrow

in the transverse horizontal direction and long in the vertical

direction. This beam passes through a homogeneous electric

field which would deflect the beam if the atoms were charged.

Figure 3 shows a horizontal cross section of the apparatus

in greater detail. In terms of the geometry of Figure 3, the

deflection that a charged molecule of velocity v would

experience due to the electric field is given by

Sv = qE + (22)
2my 2

where

particle in the beam and

In particular, a molecule with the most probable velocity

of molecules in the source (_ = _2kT/m) is deflected by

the amount

q, m, and v are the charge, mass and velocity of the

E is the electric field strength.

it (LI + 2%s) (23)

is Boltzmann'sis the source temperature and k

s_ = qE

4kT

where T

constant.

In our recent experiment

I4 = 200 cm, _e = 30 cm

-18-
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and E = 105 volt s/cm.

The experiment was done for cesium and potassium atoms

and the oven temperature was about 500 OK. Our detector

sensitivity was such that a deflection of 10 -5 cm could be

detected. Hence the minimum detectable atomic charge was

q --_ 3 x 10 -17 e

For cesium the atomic number is 557 so the minimum detectable

charge on an electron-proton pair, 8q , is smaller by a

factor of 55:

8q _ 6 x 10 -19 e

This sensitivity is in the range of interest for the

Lyttleton-Bondi theory.

There are some complications which are important to the

experiment. Because of the smallness of the deflections

being observed, electric field inhomogeneities can produce

comparable deflections associated with the polarization of

the atoms. The atoms have no permanent electric dipole

moments, but in an electric field an electric dipole moment

is induced. If the field is inhomogeneous, there will be a

force on this induced electric dipole moment. In our

experiment such field inhomogeneities arise at the ends of

-20-



the field region.

W(E) , then the force due to the induced dipole moment is

vI lF = = -

If the energy of the atom in the field is

(24)

It is apparent from the form of equation (24) that the

direction of the force does not change with the direction

of the field. Hence by reversing the polarity of the potential

across the electrodes, we can distinguish between this dipole

polarizability force and the force on a net atomic charge.

Another complication in interpreting the deflection

measurements is the spread in velocities of the atums. The

velocity distribution is a Maxwellian one for particles

effusing through an opening in the oven:

Iv dv = 2__Iv3e_V2/e 2 dv (25)
e4

where I is the total beam intensity. The observed deflection

is given by an average over this velocity distribution.

Figure 4 illustrates a third complicating factor which

must be considered. The source and detector slits have

finite widths, so that we obtain a beam intensity distribu-

tion in the detector plane whihh is trapezoidal. In addition,

the detector has a finite width.

-21-



L
N

I

0

4-J

-,-t

.,%

-_

0

-_

-_

4J

°_

0

0

-22-



In order to relate the observed intensity pattern to

so , it is necessary to integrate over the width of the beam

path and over the velocity distribution. The relation between

so and the change in intensity with the detector positioned

where the beam intensity has one half its maximum value is

given by:

_I 2s_

I d - p (26)

where d is the half width of the penumbra of the beam in the

detector plane and p is the half width of the umbra. The

analysis has also been done in another way which does not

require an a priori knowledge of the slit geometry and align-

n_nt hut uses only the observed beam intensity distribution.

Some technical features of the experiment and of the

apparatus will now be discussed. The choice of the atom is

dictated largely by atomic beam technology. The only

property of the atom that appears in the deflection equation

(23) is the temperature at which it must be proauced. This

should be as low as possible. For this experiment we desire

an atom containing many electron-proton pairs. Alkali atoms

are used because they are produced conveniently in beams at

relatively low temperatures and they are detected efficiently

-23-



with a hot wire surface ionization detector. Figure 5 shows

the oven used to produce the beam of potassium or cesium

atoms. It is used at a temperature of about 500 ° K.

Figure 6 shows the observed and calculated beam intensity

distribution with oven and collimator slit widths of 0.004 cm.

The detector width is also 0.004 cm. The agreement between

the two curves is good; the small discrepancy is attributed

to atomic beam scattering, slit misalignment, and imperfect

knowledge of slit dimensions. The detector is placed at one

of the two half-maximum intensity points in order to obtain

the maximum change in intensity for a given so .

Figure 7 shows the electric field assembly in vertical

cross section. The parallel plates are made of aluminum

and are about two meters in length with a spacing of 1 or

2 mm. Electric fields of 100 kv/cm are obtained before

breakdown occurs.

Figure 8 shows some of the observed data. The change in

beam intensity Zh observed with the detector placed at the

two half-maximum intensity points (zl and za) is plotted as

a function of electric field for both polarities of the field

(A and B).

The deflection of the beam due to a net atomic charge
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e

is directly proportional to E and, at the field strengths

used in this experiment, the deflection from the induced

dipole moment is proportional to E 2. The observed dependence

of Z_ (z1,E) is shown in Figure 8. It is seen that zl (zi,E)

is linearly proportional to E 2 up to a field E of about

105 v/cm, as expected for deflections due to dipole polariza-

bility alone. At still higher fields ZI is no longer proportional

to E2; indeed both z_ (zl ,E) and _ (zs ,E) decrease with an

increase of E at sufficiently high values of E . This

behavior is not consistent with deflection due to a net atomic

charge and a dipole polarizability but rather is explained

by an attenuation of the atomic beam at the higher fields.

The beam appears to be attenuated in proportion to the gap

current, and this gives rise to a field dependent signal

change D(zi,E ) not associated with an electric deflection

of the beam atoms.

Table I shows the results deduced from such measurements

on Potassium and Cesium atoms and on hydrogen and deuterium

molecules. The upper limits for the charges are given. The

upper limits on the charge are considerably higher for hydrogen

and deuterium than for the alkalis. This is due to the fact

that the Pirani detector for hydrogen is not as efficient as
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the hot wire surface ionization detector for the alkalis so

that the gas apparatus was shorter and less sensitive to

small deflections than the alkali apparatus.

t_.

The charge of an atom or molecule is assumed to be com-

pletely given by the scalar sum q = Z6q + Nqn , where Z

is the number of electron-proton pairs,

the electron-proton charge difference,

neutrons, and qn is the neutron charge.

6q = qp - qe is

N is the number of

The most direct

determination of a limit for 6q is obtained from the

measurement of the net charge of the hydrogen molecule:

2

< 1 x 10 -15 qe (27)

In addition, the result from deuterium gives a limit for qn :

qn < 2.4 x l0 -15 qe (28)

Smaller limits than the above can be obtained from the

experimental values for the charges of cesium and potassium.

q(Cs) = 55 6q + 78 qn = (13 ± 56) x 10 -18 qe (29)

q(K) = 19 6q + 20 qn = (-38 ± ll8) x l0 -18 qe (3O)

As simultaneous equations in 6q and qn ' the solution gives

-30-



6q = (-8.5 + 27) x l0 -18 qe (31)

independently of the value of qn ' and

qn = (6.1 _ 20) x I0 -18 qe (32)

independently of the value of 6q.

A still smaller limit for the electron-proton _i=_-4....

difference can be given if one assumes that 6q = qn " This

relation follows from the usual assumption that charge is

conserved in beta decay of the neutron (N - p + e + v) and

that the charge of the antineutrino is zero (*). Then

6q = q (atom)/(Z + N) and we obtain from q(Cs) :

6q = (i.0 + 4.2) x I0 -19 qe (33)

With improved vacuum, electric field conditions, and

detector stability we believe our atomic beam experiment on

the alkalis could be improved in sensitivity by about a

(*) An upper limit to the neutrino charge can be obtained

by considering that the neutrino is a Dirac particle with

a mass of 500 ev (upper limit to the allowed neutrino

mass) and computing the upper limit to the charge that

is consistent with neutrino cross-section data (J. S.

Allen, The Neutrino (Princeton University Press,

Princeton, 1958). The limit found for the neutrino charge

in this way is about 10-1°qe .
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factor of I00. An atomic beam experiment on thermal neutrons

was done by Shapiro and Estulin who obtained an upper limit

for the neutron charge of 6 x 10 -12 qe •

I would like to discuss briefly the macroscopic gas

efflux experiment done first by Piccard and Kessler (4),

which measures the total charge Q of M gas molecules by

observing the change in potential of a metal container relative

to its surroundings when gag effuses from the container.

Figure 9 shows their apparatus consisting of two concentric

conducting spheres which form a spherical capacitor. The inner

sphere can be filled with a gas. The voltage between the two

spheres depends on the capacity, on the surface charge on

the inner sphere, and on the volume charge carried by the

gas.

Piccard and Kessler filled the inner sphere with 20 to

30 atmospheres of CO 2 or N 2. Then they allowed the gas to

effuse from the inner sphere and measured the change in

potential across the capacitor. If the gas were neutral and

there were no changes in the dimensions of the sphere, then

there should be no change in the potential. On the other

hand, if the gas had a net charge due to a proton-electron

charge difference, then the potential would change when the

-32-
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gas leaves the inner sphere. The efflux of ions or electrons

was prevented, or at least made difficult, by biasing a small

_bstacle in the throat of the exhaust tube relative to the

:nner sphere such that ions are trapped in the inner sphere

and are not exhausted with the neutral gas. From their

measurements they determined that 6q < 5 x 10 -21 e.

Figure i0 shows a modern version of this same experiment

by King (13,14). King did his experiment with hydrogen and

cn helium.

Conservatively we can interpret his results as setting

aD upper limit for the charge on H 2 of less than 10 -19 qe "

A modern extension of Millikan's o11 drop experiment

using a small, magnetically suspended metal sphere has been

_-r<:Dosed to achieve a higher sensitivity in the determination

_'f 6q

l able II presents a summary of experimental information

on the electron-proton charge difference.

o Interpretation of Results.

The atomic beam deflection experiment on the alkali atoms

(13) J. G. King, Phys. Rev. Let. 5, 562 (1960).

(!4) A. M. Hillas and T. E. Cranshaw, Nature 18___4, 892 (1959),

ibid.186, 459 (1960). H. Bondi and R. A. Lyttleton,

Nature 18___4, 974 (1959).
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provides a limit for 6q of 5 x 10 -19 qe " This limit is

about 1/4 the value of 6q required by the theory of the

expanding universe proposed by Lyttleton and Bondi. Further-

more, the macroscopic experiments by the gas efflux method

provide the even smaller limit of 10 -21 qe to 10 -20 qe "

_ u_ _,,_ __ _-,.,v-_ _u,._ evidence against _,,e ......

of the Lyttleton-Bondi proposal which requires 6q =

2 x 10 -18 qe ; they do not test the alternative, though

less attractive, form of the Lyttleton-Bondi proposal which

requires a greater number of protons than electrons in the

universe.

The equality of the electron and proton charge magnitudes

has been established with unusually high precision in this

and other recent experiments; hence they offer no support

for the suggestion that baryon conservation might be simply

a consequence of charge conservation. Furthermore, it would

seem that any theory of elementary particles should require

that the renormalized electron and proton charge magnitudes

be equal.
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Preface
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Gravitation and Relativity presented at the Institute for

Space Studies, NASA Goddard Space Flight Center during the

academic year 1961-1962. Professor R. H. Dicke of Prince-

ton University organized the series as an introduction to

the subject for non-experts, emphasizing the observable

implications of the theory and the potential contribution

of space sciences may make towards a better understanding

of general relativity.

The approach has been conceptual rather than formal.

For this reason, this record does not include a complete

mathematical development of the subject, but, we hope,

does contain sufficient mathematics to elaborate on the

conceptual discussions.

The notes were prepared with a certain amount of

editing from a transcript made from recordings of the lec-

tures. The speakers have not had the opportunity to read

and correct the final manuscript. Hence, we accept res-

ponsibility for errors and omissions.

H. Y. Chiu
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Since the early days of quantum mechanics many people have

felt that a complete quantized theory of matter must include

the theory of gravitation. For this reason, there has been

much effort to join together these two fundamental aspects of

the physical world. One of the earliest attempts at this union

is the program _,,_I_,_ hy Bergm..ann (I) in 1947, Since then

(2)
many other approaches have been taken.

Studies on the quantization of general relativity to date

have concerned themselves mainly with a better understanding of

the classical formulation of general relativity as a prelude to

applying one of the several techniques of quantization to ito

Historically, and most commonly, the quantization of a given

classical system proceeds from the Hamiltonian formulation of

that theory. Given the canonical coordinates and momenta which

describe a state of the system and the Hamiltonian as a function

of these variables, there is a more or less unique algorithm for

constructing the corresponding quantum description of the sys_

tem. Thus much of the effort in quantum relativity has been

towards constructing a Hamiltonian formulation of general

relativity.

However, because of difficulties inherent in a Hamil-

tonian formulation of general relativity, other procedures of

-I-



quantization are being tried. One such procedure, under current

investigation by Bergmann and Komar (3) and also DeWitt (4), is

to look at the coordinate invariant quantities one can construct

in the theory and calculate their commutators in the classical

theory. Once these commutators are known for a complete set

of invariants, one can hope to find an operator representation

for them which reproduces their classical commutator algebra.

DeWitt has employed a generalization of the method of construc-

(5)
ting commutators developed by Peierls while Bergmann and

Komar have made extensive use of the theory of infinitesimal

canonical transformations.

Another approach, currently being worked on by Wheeler

and his group(6! is that of the Feynman path integral formu-

lation of quantum mechanics. The Schwinger variational

principle has also been applied to general relativity by

(7)
Arnowitt and Deser.

These alternate approaches to the usual Hamiltonian quan-

tization have all been initiated with the hope of overcoming

the difficulties associated with Hamiltonian quantization.

This goal has not been reacheG. The difficulties in Hamil-

tonian quantization reappear in one or another form. Since

an exhaustive treatment of each of these methods of quanti-

zation as applied to general relativity would be impossible
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here, we will concentrate our attention mainly on the Hamil-

tonian form of quantization. This form contains all of the

essential difficulties to be encountered in quantizing general

relativity. Furthermore, this quantization scheme is the one

we understand the best

II. Motives for Ouantizinq the Gravitational Field

Before I discuss the details of the difficulties, I would

like to point out some of the pros and cons of such an under-

taking°

It has been argued by many people that since the gravita-

tional field is an extraordinarily weak field around 10 -40 of

the strength of the electromagnetic field, one should not expect

to see any effects of gravitation on a microscopic atomic or

nuclear level. Consequently, gravitation will play no essential

role in elementary particle processes or any of the other

microscopic phenomena we know about For this reason many people

do not believe in the necessity of quantizing gravitation field.

However, there are a number of arguments that suggest that this

argument based solely on the weakness of the gravitational field

may be misleading

First of all the general theory of relativity is a non-

linear theory and is intrinsically non-linear, unlike electro-

dynamics which only becomes non-linear through its coupling with
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the Dirac field. The gravitational field is non-linear even with-

out coupling to some other _urce field. Thus there is no assurance

that the concepts and procedures developed in electrodynamics are

meaningful in the case of general relativity. We do not even know

if the gravitational analogue of the photon exists,

Recently, however, Feynman has taken the position that it would

be interesting to see how far one could get, by applying the con-

cepts and procedures usually used in quantum field theories to

general relativity, and by treating it as a linear theory with the

non-linear part acting as an effective self-interaction_ In this

way, he has obtained the classical results of general relativity

concerning the_ experimental tests of the theory. His result

will be discussed in more detail in the last chapter of this

lecture series.

On the other hand, one can argue that the full non-linearity

is an essential feature of the problem and cannot be treated

as a small perturbation It is possible that when one gets very

close to an elementary particle the gravitational field becomes

large enough that the non-linearities begin to play an essential

role and begin to change the character of the problem in a

qualitative manner. This corresponds to a situation in the

theory of differential equations: In a non-linear system there

exist solutions which cannot be reached by linear approximations.

There is an example of such a situation in classical field

theory. This is the Born-Infeld theory of electrodynamics. Born
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and Infeld found an exact solution corresponding to a point charge

In the full non-linear theory the self-energy of the charge is

infinite and there is an automatic cut-off to interactions of the

charge with electric fields of arbitrarily high frequency_ The

linear approximation to this theory is Maxwell electrodynamics

where those results do not hold, even if non-linear terms are

included as perturbations. This example shows that in some

aspects of the theory one cannot expect qualitative similarities

between a non-linear theory and its linearized version This is

directly related to the problem discussed by Wheeler in Lecture

X. There he introduced non-EuclidQan topology into the theory.

As long as the topology is Euclidean, we are justified to make

a linear approximation of the gravitational field equations

with the non-linear term taken to be a small perturbation.

However, if one takes seriously the idea that in the neigh-

borhood of elementary particles the topology may be different

from Euclidean, then it is not possible to treat the gravita-

tiona I field as a weak field. There is no suitable first-order

approximation to the field. It is necessary to quantize the

whole theory right at the beginning,

There are also several other arg_nlent_ in favor of quantizing

the gravitational field. It is believed that all particles pro-

duce gravitational fields. If these gravitational fields are

effectively classical, then by measuring all components simultaneously
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can determine both the position and velocity of a particle

si_uultaneously and thus violate the uncertainty principle.

Hence the gravitational field _L_ustnot be classical but must

fluctuate in order to be compatible with quantum conce_ts.

Pauli argued that such fluctuations in the gravitational

field may smear out the light cone. This in turn might con-

ceivably furnish a natural cut-off in the theory. It is still

too early to tell if these conjectures are actually true.

[:I. Quantization Procedure

The usual formulation for the equations of general re'a-

tivity is in terms of

ture IV)

action principle (discussed in Lec-

s = _RJ_ d4x (1)

However, as mentioned above, thls formulation is not convenient

for quantization. Rather we desir a Hamiltonian formulation.

Therefore, one of the first problems in quantizing gravita-

tlonal field is to formulate general relativity in a Hamlltonian

form. That is, to construct a Hamiltonian for the theory, to

find the canonical variables, and to apply the ordinary commu-

tation relations to obtain Eigen solutions. However, to obtain

a Hamiltonian formulation of the theory is a difficult tas]f in

itself because of the general covariance of the theory.
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IV. The Hamiltonian Formulation of General Relativity

The Hamiltonian equations for any system described by the

canonical variables qi and Pi are of the following form:

_H " _H
=-- and Pi = - --

qi _Pi _qi

where H the Hamiltonian, is a function of the q's and p's.

(2)

Given qi and Pi initially we can then find their first deriva-

tives from equations (2) in terms of these initial values By

successive differentiations we can find all higher derivatives

in terms of them We can thus expand the solution qi(t) in a

power series about t o as

qi (t) = qio + qio t + "" = qio + 5H t +... (3)
_Pi o

_H

Pio _qi ot + .. (4)

and

Pi (t) = Pio + Pio t + ""

Thus, in a conventional Hamiltonian theory a knowledge of the

initial q's and p's leads to a unique determination of their values

at any future time. This situation, however cannot hold in genera]

relativity as the follo_¢ing considerations will show. Let us sup-

pose that, given the ten components of the metric and their first

time derivatives initially the metric in the future is dniquely

determined from the field equations We can picture the situa-

tion schematically in Figure 1 below. Here we plot the metric

as a function of time. The abscissa schematically represents

the functional space of the metric.
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Figure 1 - Schematic representation of the ti_:_e development
of metric components.

However, we may perform a coordinate transformation which

leaves everything unchanged up to some time t z > to and thereafter

deviates from the identity transformation. Such a transforma-

tion is a permissible transformation since all derivatives

The effect of such

exist up to any order we desire. A atransformation is repre-

sented in Figure 2.

__,_ ' i I/ OMI61_L ME.T_IC

t

Figure 2 - Schematic representation of time development of

metric components, under time dependent coordinate

transformation.
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In this way we obtain what appears to be a different solution

to the field equations starting from the same initial data. Of

course, the two solutions do not represent different physical

situations but merely the same situation expressed in two different

coordinate systems.

In Figure 2, the graph of the transformed metric is super-

imposed on the original metric. The region where the two graphs

overlap represents that part of the metric which describes the

physical situation and is not affected by a change of coordinates

From these considerations one can conclude that the field

equations do not determine the time development of the metric

uniquely. In the Hamiltonian formulation of the theory this non-

uniqueness is reflected in a non-uniqueness in the Hamiltonian

If it were uniquely determined then of course one could obtain

a unique solution for the metric in the manner indicated by

equations (3) and (4).

There is another difficulty which arises in a Hamiltonian

formulation of general relativity as a consequence of the general

covariance of the theory. One can construct a momentum density

p uv conjugate to g_v by differentiating the Lagrangian density

of the theory with respect to guv:

pUV = 5_

(5)
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Actually the Lagrangian density _ used here is not equal

to _-_R but diffe=s from it by an ordinary divergence (_U) so

so chosen that the altered Lagrangian density is free of second

derivatives of the metric. Both Lagrangian densities, of

course, lead to the same field equations for the metric. Thus

l l\) I

p+" is a well-defined functional of gu_, gu+ and thei _ spatial

derivatives,

p_V = pU_(g_m ' g_.8) " (6)

However, because of the covariance of the theory it turns out

that the canonical variables guv, PUVare not independent of

each other but are related by a set of four equations of con-

straint, called the primary constraints, of the form

p 0u + FU(g_8) = 0 (7)

As a consequence we cannot invert equations (6) to obtain

unique expressions for the guy in terms of the p uv and guy.

Consequently, when one tries to construct the Hamiltonian

density, _ , with

3-_ = +':%" -2 (g_8, +8) (8)

one cannot eliminate the g_8's from the right-hand side of

eq. (8) to obtain_as a function of the canonical variables

alone. This was one of the main problems that confronted

people in formulating a Hamiltonian theory for general

relativity. It was solved in different ways by Bergmann,
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Pirani and Schild(8) and Dirac(9)

A similar situation occurs in electrodyn_ _ _-cs. There

things are simple enough so that one can see in detail just

what is happening. The electromagnetic field is described by

a vector potential A and a scalar potential cp together with any

matter variables such as irac fields which might occur. The

theory is invariant under the group of gauge transformations

and

: A- Vl (9)

m

_=_+I

where X is an arbitrary space-time function.

(i0)

In general

relativity the transformation group depends upon four arbitrary

e-time functions. They are the four new coordinates expressed

as functions of the old cDordinates. In electrodynamics there is

just one arbitrary function. However, many of the consequences

are the same. Thus, by means of arguments similar to those

used in the general relativity case one can show that a knowledge

of the field quantities A and _ together with their first time

derivatives does not lead to a unique solution for these quanti-

ties into the future. Thus all of our comments concerning the

Hamiltonian formulation of general relativity apply in this case

with equal force.

The Lagrangian density of electrodynamics is given by

I : ½(A + v_) 2 - ½(VxA):- p_0 + j-A. (ii)
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We can define the momentum density _ conjugate to A as the

derivative of _ with respect to A and so obta n

= A + _ (12)

We note, however that _ does not contain any _ terms so that

_, the momentum conjugate to _ satisfies the equation

This is the primary constraint associated with the gauge in-

variance of the theory and is analogous to the primary con-

straint equations (7). Here we see directly that we cannot

determine _O in terms of the momentum densities However, we

can obtain the A's in terms of the canonical variables ar_: so

obtain a Hamiltonian H given by

H = _:M: d3x (14)

where the Hamiltonian density J_ is

:_ = ½p2+ ½(vxA) 2 _ j-A + _(_-£ + 0) + _ (15)

In this expression, _ is taken to be an arbitrary space-time

function. Its appearance reflects the non-uniqueness in the

Hamiltonian which is necessary if the canonical equations of

motion are not to determine the canonical variables uniquely

in terms of their initial values

Unfortunately, this is not the whole story. There is

another constraint equation that arises as a consequence of the

requirement n be zero so that equation (13) is maintained through-

out the evolution of the system. The time derivative of _ is
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obtained in the usual way by taking its Poisson bracket with H. When

we do this we find that

= (_,H) = V.p + p (16)

so that we must require that

v-P + P = 0 (17)

This is just one of Maxwell's equations since p is equal to -E,

the electric field Equation (17) is referred to as the secondary

constraint of the theory. Fortunately all higher time derivatives

of _ and all time derivatives of v'_ + p vanish so that there are

no additional constraints associated with the theory.

Obtaining a Hamiltonian formulation of general relativity was

carried out along similar lines However, because of the complexity

of the primary constraints (7) the resulting expressions for the

Hamiltonian and the secondary constraints were virtually impossible

to work with. Recently Dirac, DeWitt, and myself, all independently,

were able to introduce a new set of canonical variables into the

theory in such a way that the new primary constraints took on the

simple form

pOu = 0. (18)

In terms of these new variables the Hamiltonian density took on

the relativt ly simple form

_C = (gOO)-½)f + gor _r (19)
L

where _L and_£r are certain functionals of the grs and prS and

their spatial derivatives. (Here Latin indices take on the

values i, 2, 3,).

Since we require pOU = 0 for all times, pOU must also be zero

.o_
for all times, p is calculated by computing the Poisson bracket
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between p°u and the Hamiltonian H. Since _L and _r do not depend on

gou or pOU, by taking the commutator of with respect to pOU, one

_L = _r = 0 (20)

The constraint on M r is known as the longitudinal covariance, that

on_L is known as the Hamiltonian constraint. These constraint

equations are the main cause of all difficulties in formulating a

quantised version of the theory. The existence of these constraints

is a direct consequence of invariance of the theory under arbitrary

coordinate transformations. For this reason it is most likely that

the difficulties associated with the Hamiltonian formulation of the

theory will generally appear in one way or another in any formula-

tion of the theory. In the present formulation, they tell us that

the canonical variables grs and prS are not independent of each

other. But in formulating a Hamiltonian quantization by imposing

commutation relations on canonical variables it is essential that

these variables be independent. This means that, in effect, we

have too many variables and some should be eliminated from the

the redundant parts of

theory. Unfortunately, the standard methods of eliminatingAgou and

pO_ are not directly applicable because of the complexity of the

constraint equations (20).

A simplified form for these constraints was first given by

Dirac. The equation for_ r reduces to

_r = pSr
Is (21)

Subscript !s denotes covariant differentiation using the

-14-
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metric grs and its inverse ers. It is not the full four-

dimensional covariant derivative, but only the three-dimen-

sional covariant derivative.

Equation (21) is very similar to the equation that appears

in electrodynamics in the case of zero charge density.

V'p = 0 (22)

Equation (21) is a generalization of the divergence applied

to a symmetric tensor in curved spaces. In electrodynamics

we have simply the ordinary divergence of a vector. But

this difference is the cause of_ny difficulties. The con-

straint on_L _,

_k = _ (gragsb - ½grsgab) prspab + R(gab ) (23)
K

where

2= I grs I (24)

and aR(gab) is the curvature scalar constructed from the

metric grs and its inverse. The first term resembles a kinetic

energy while the second term resembles potential energy. In

the linearized version of the theory these terms are in fact

interpreted as kinetic and potential energy.

In order to understand better the type of difficulties

introduced into the theory by the constraint equations (20),

let us return to our example of electrodynamics. There we

have the variables AA andS. They are not independent
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variables, because they satisfy Equation (18). This means that

not all of the variables of the theory are independent dynamical

variables. If we can perform some kind of transformation and

make ?-p + p a new momentum density for the theory, then to-

aether with the canonical r_or_in_ee_ _,,_=*= *_ *_- .................. J-7-_ _ _._ new

momentum they will play the same role as _ and _ and can be

eliminated from the theory.

One very simple way of doing this is to introduce the

longitudinal and transverse components of A and P.

Let

A = AL + AT

where AL and AT satisfy the following conditions:

V-A T -- 0

V'A L -- 0

(25)

(26)

(27)

Similarly, P may be written as

p = pL+ pT

Then Equation (18) reduces to

v-P L + p = 0 (28)

p T does not appear in the constraint equation and we are free

to consider pT and A T as the basic dynamical variables, pL is

expressed in terms of p. If p is zero pL is also zero. A L

may be made to be zero by introducing a proper gauge condition.

Hence o_can construct the Hamiltonian in terms of A T and pT
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which are then the canonical variables.

The commutation relations between AT and pT contain some

terms other than the usual delta function commutation relations.

However, these terms are independent of A T and pT and no new

r',e_mr_l "_ ,.-,=.l-.i ,.-.,,,-_ arise _T ._; pT uz,uer=_,_ are also invariant ........ a gauge

transformation. Under a gauge transformation only A L changes.

In Figure 3 we have schematically represented two different A

fields describing the same physical situation, i.e., the same

E and B fields.

/// L:
/// 2 - - -
z//__ \\\

'/ZX
_ _.,,- W"

Figure 3 - Schematic representation of A field under gauge

transformation.

The central portion of the figure represents the transverse

parts of the two A fields and is the same for both. The two

outer portions represent the different longitudinal parts of
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the two fields.

With almost no modification, the above result applies to

the case of gravitation. That is, in the prS _ grs represen-

tation, there is some invariance under coordinate transformations.

variant part of the representation is indicated by the fluff

about an invariant core. This fluff depends upon the particular

coordinate system one chooses. Under any coordinate transfor-

mation, the central core remains unchanged.

Hard core of physical

situation_

I//Ix\\ e

Coordinate dependent

fluff

Figure 4 - Schematic representation of invariant core of

intrinsic geometry and coordinate dependent fluff.

As in the electromagnetic case, one would like to

separate from grs and prS a physical part which remains un-

changed under coordinate transformations. How easily this

separation can be made depends upon the form of the constraint
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equations. In the electromagnetic case, the separation is

achieved by breaking up A and P into longitudinal and trans • erse

_artc. As we _aw, the lonqitudina! part of p is uniquely deter-

mined by the constraint equation (28). On the other hand, AL

can be transformed away hy _hnn_ing _ _rnn_r a_lla_ condition.

It is possible to break up the grs and prS in a manner

analogous to the electromagnetic example. However, the

redundant variables cannot be eliminated from the theory very

easily.

At best, one can accomplish this solution by an approxi-

mation procedure based on a weak field approximation. To

date, no one, to my knowledge, has suggested a decomposition

scheme of grs and _rs such that the physical part does not

appear in the constraint equations, or a scheme allowing one

to solve the constraint equations directly and to write down

the redundant variables in terms of the other variables.

V. Quantum Version of the Theory

With the above discussion of the classical Hamiltonian

formulation of general relativity and electrodynamics we can

now turn our attention to the quantum versions of these

theories. Again, many of my remarks will be devoted to the

electromagnetic case since we know fairly well what is going
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on there. There are two different ways to quantize these

theories within the Hamiltonian framework. The most straight-

forward of these, and the one used by Bergmann and Komar, and

(10)
DeWitt, is to treat only the physical part of the field

varaibles as operators defined in some Hilbert space. The

remaining field variables are to be eliminated from the theory

by the use of the constraint equations and the imposition of

gauge or coordinate conditions. Thus, in the electromagnetic

case, one would treat only A T and pT as operators and replace

L by -V _2P- Once one has fixed the gauge (for example, that

A L = 0) one can obtain the Hamiltonian directly in terms of

these transverse parts. Then one can write down the Schr_dinger

equation. Finally the commutation relations between the trans-

verse parts follow from their Poisson bracket relations in the

usual way. A possible representation analogous to the x-

representation in ordinary quantum mechanics would be to

define the operators A T and pT as follows:

AT_ = AT_

pT = i_

In this way, state vechors would then be functionals of A T •

We may apply the same procedure too the gravitational

(29)
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case for which grs TT and prsTT co__-respond to the transverse

Using aparts of the canonical coordinates and momenta.

representation similar to equation (29) we take

grsTT_ _ grsTT_

(30)

prsTT __--i_5 6

6grsTT

State vectors would then be functionals of grs TT. However,

because we could not solve the constraint equations for any

four of the redundant variables in closed form, we do not

have a closed form for the Hamiltonian in terms of the grs TT

and pF sTT. We are forced to make a weak field expansion.

This is a return to the linearized theory which Feynman has

so nicely treated.

There is another difficulty which arises when one takes

this approach to quantization. The above scheme for separa-

ting off the physical part is by no means unique in either the

electromagnetic or the gravitational case. One can set up a

scheme which allows one to calculate the physical part in many

different ways. For example, in electrodynamics one can fix

the gauge by imposing conditions on some of the A's. The

remaining A's will then be gauge invariant. As an example,

one can fix the gauge by requiring that
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AI = 0 (31)

A_ (x = 0) = 0 (32)

A3 (x = y = 0) = 0 (33)

(x#0,In this gauge, the values of A_ (x / 0) and A s

y _ 0) ar_ gauge invariant quan#_#_ and together with their

canonical conjugate momenta can be used to describe the physical

state of the electromagnetic field. This description is, of

course, quite different from the previously discussed condition

A L = 0. Thus, there are many different ways of fixing the

gauge in electrodynamics. Each different way in turn leads to

a different set of expressions which can serve as the physical

variables.

The situation in general relativity is quite analogous.

Once the coordinates are fixed by imposing suitable conditions

on the grs'S and prS's, the remainder variables automatically

become invariant under coordinate transformations and can _erve

as physical variables. These are commonly referred to as

observables. An interesting question is whether a quantized

version using one set of observables is equivalent to a

quantized version using another set. I will discuss some of

the difficulties involved in answering that question.

Imagine that two different decompositions of the grs and

prs have been found. Symbolically we write
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, prS}{grs = {Yphysical, Ycoordinate } (34)
and

{grs, prS} = {Y'physical, Y'coordinate} (35)

The y's represesent physical or coordinate conditions. Since

Yphysical and Y'physical both represent the same physical con-

ditions, they must be functions of each other. However, in

general, Y'coordinate will depend both on Ycoordinate and

Yphysical and vice versa. As for example in the formulation

of Equation (21), we wish to treat only the physical parts of

the field as operators and to consider the coordinate part as

a c-number (classical, or commuting number, that is, not an

operator). This separate treatment of the physical and coor-

dinate parts leads to the following difficulty: what is treated

as a c-number in one formulation will appear as an operator in

the other formulation, and vice versa. It is not inconceivable

that one can eliminate the above-mentioned difficulties and con-

struct a general proof of the physical equivalence of different

decomposition schemes, which are within the framework of the

quantization procedure discussed above. However, I strongly

doubt this possibility for reasons which I will now discuss.

We have mentioned before that there are actually two ways

of affecting a quantization within the Hamiltonian framework.

In the one, discussed above, only the physical parts of the

field are to be treated as operators defined in a Hilbert space.
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The physical parts are invariant under a gauge or coordinate

transformation. Hence the gauge or coordinate group disappears

from this "Hilbert space quantization," making it difficult to

carry out the proof of equivalence discussed above.

In the other approach to quantization, one treats all of

A and _P or the grs and prS are assumed to have the standard

commutation relations between canonical variables. Thus we

have, for example

[grs, g'ab] = [prS, p,ab] = 0 (36)

ab
[grs, p,ab] = i_6rs6(X _ x') (37)

The prime over a variable means that it is evaluated at the

space point x' These operators operate in a linear vector

space whose elements are functionals of the grs" In this

representation the operators are given by

grs_(x) = grs_(x)

(38)

prS = i_ 6_____ u(x)

6grs

In this case all the coordinates and momenta and not just the

transverse (physical) parts are treated as operators. Because

of the constraint equations (20), this vector space is not

normalizable and hence is not a Hilbert space.
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We now ask, how do these constraints modify the quanti-

zation of the theory. With the Hilbert space method of

quantization, the cons_ain_ were no problem because they were

eiiminated from the theory prior to quantization. Now they

must be taken into account. However, the constraint equations

cannot be treated simply as operator equations directly. If

we do this, they will be inconsistent with the commutation

relations (38). That is, if we evaluate the covariant deri-

vative of both sides of equation (37) at x 'b and if we assume

that _,a = p,a_b = 0 everywhere, the left hand side will be

zero everywhere, while the right hand side will not be zero

at many points of space. There is one way to avoid this

difficulty. To describe the physical states of the gravi-

tational field, we shall use only those elements of the linear

vector space, _, which satisfy

_a_ = 0 (39)

and

X L ¢ = 0 (40)

It is possible to show that, with these restrictions on the

state vectors, the quantum version of the theory passes over

to the classical version in the correspondence limit. This

will not be so if this assumption is not imposed.

In order to complete this formulation we must impose
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addition gauge or coordinate conditions. However, as is the

case of the constraint equations, they cannot be treated as

operator equations but must be assumed to hold only for a sub-

class of the state vectors which satisfy conditions (25a) and

(25b). Thus the subspace of the original linear vector space

_n_ _,, _h_ _,_+_= which sati_ I ............... -

ther broken up into subspaces by the imposition of various

kinds of gauge or coordinate conditions. We schematically

picture the space of all vectors defined by equation (24), in

Figure 5. The shaded area represents the subspace of vector

space of vectors satisfying conditions (25a) and (25b). The

two smaller cross hatched areas represent subspaces, in which

two different sets of coordinate conditions hold.

 2122[12s:21ciiltlls
Eq. (25)

_f_ \ Space for particular

dinate conditions

Figure 5 - Schematic representation of vector space

We can draw a similar picture in the classical theory as
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well, only now the overall space is the phase space with coordinates

A and P or and prS_ grs . The shaded area now will represent the

subspace of points satisfying the constraint equations while the

two smaller, cross hatched areas will represent points satisfying

two different sets of gauge or coordinate conditions. As we have

seen, the points in the large shaded area are, in a certain sense,

redundant; many of them represent the same physical situation.

They differ only because different coordinates are used to describe

the same state of the field. Thus we should expect that the

totality of points within any one cross hatched area should stand

in a one-to-one relation with the possible states of the system.

This also means that there should be a one-to-one correspondence

between the points of one cross-hatched area and those of any

other cross hatched area.

in the classical version of the theory

Indeed, it has been proved_that there always exists a

canonical transformation which maps the points of one cross

hatched area in a one-to-one manner onto the points of any

(ii)
other cross hatched area.

These transformations are generated by linear combinations

of the constraints. Since the transformation, which maps one

cross hatched area onto another, is obviously a finite gauge

or coordinate transformation, we see that linear combinations

of the constraints form the generators of the invariance group

of the theory. In the course of the proof it was necessary
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to show that these generators did indeed form a group. The

necessary and sufficient condition for this to be true is

that the Poisson bracket between any two constraints is a

linear combination of constraints. The constraints do possess

this property. It is thus concluded that the subspace spanned

by those points in phase space, for which the constraint

equations are valid (the shaded area in Figure 5), is simply

connected. Therefore, there can be no physical experiment

within the theory which could single out a preferred coordi-

nate system. Thus the principle of general covariance is not

violated.

From the above discussion, we can see the intimate

relation between the invariance group of the theory and the

constraint equations. This relationship is a general one

and holds whenever a theory is derivable from a variational

principle, and _ossesses an invariance group whose elements

are defined by one or more space-time functions_

These concepts can be best illustrated in terms of

electromagnetic theory. If we include • and _, as well as

and P as our canonical variables, we can form the following

generator of an infinitesimal gauge transformation:

c = Jd3x + ¥(7.P + (41)

The variahion of the field quantities _ and A may be easily
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computed in the subspace of interest in which the constraint

equations are also satisfied:

_ = [_,c] = y (42)

and

6--A = {A,c_ : -Vy (43)

Equations _z; and j -

transformation. Also, it is easy to prove that the gene-

rators _ and V- _P + p have vanishing Poisson brackets among

themselves so that the generators of the form given in

equation (41) do indeed form an infinitesimal group. The

elements of this infinitesimal group can be added to give

a finite gauge transformation. Exactly the same situation

pertains in general relativity where a linear combination of

the constraints generate an infinitesimal coordinate trans-

formation•

Let us now return to the quantum version of electromag-

netic theory• What we have said about the classical theory

is also valid in the quantum theory if we replace canonical

transformations by unitary transformations and Poisson brac_ets

by commutators• In the electromagnetic theory this is easily

done; when the canonical variables are treated as operators,

c is the generator of an infinitesimal unitary transformation.

The commutator of two such transformations is a unitary
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transformation of the same kind.

It is not difficult to show that the two methods of

quantization outlined above are equivalent. We may start

from the classical theory, impose gauge conditions and then

quantize, treating only the physical parts of the field as

operators in a Hilbert space; or we may treat all of the

field variables as operators in a linear vector space and

impose gauge conditions afterwards to restrict the vectors

which are used to describe the physical state of the system.

The essential point of the latter formulation is, that we

can carry out a unitary transformation which transforms

from one coordinate frame to another. From this we can

prove the equivalence of all gauge frames. Since the two

methods are equivalent, we have thereby proved the equivalence

of starting out in two different classical gauge frames.

There is another difficulty which appears in equations

(42, 43) to be overcome. In order to generate a transfor-

mation from one set of potentials to another which satisfies

a particular set of gauge conditions, the gauge function, y,

will in general depend upon the potentials. Thus, if we

wish to transform an arbitrary set of potentials to the

Coulomb gauge where V.AA = 0, we must use a gauge function

given by
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F = ?2v'_ (44)

where_ is the original potential. This has the consequence,

that if _A and _ are assumed to satisfy the standard commu-

tation relations

B

_r,P_ 's] = i_6s6 (45)

then it follows that

and

m

-- 1 V-A (46)

= _ (47)

will not satisfy equation (45). To by-pass this difficulty,

one makes use of equations (42,43) for generating gauge

transformations. Since C is the generator of an infinitesimal

unitary transformation the transformed varia_]e_ will

satisfy the commutation relations (45). Equations (42, 43)

are valid only in the subspace of the linear vector s_ace

where the constraint equations ho[,]. In the full linear

vector space there are additional terms in the expressions

for 6_, 6_, 6_ and 6_ which are ]!_ear combinations of the

constraints. These terms arise from the non-vanishing

commutators between _,, _, A and P and the quantities y and

_. They maintain the validity of the commutation relations

between the transformed field variables• It is then a

straightforward procedure to prove the invariance of the
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theory under arbitrary q-number (non-commuting quantum

operator) gauge transformations even in the presence of inter-

action with a Dirac field.

We can illustrate these remarks with a simple example

(fig. 6). Two observers, A and B, observe the electrical

_ .... _ _ a resistor. They buL** realize that ............Ln_ puLenu±a_

difference between two points is the only meaningful concept,

but that it is much easier to assign an arbitrary value of

potentialtD one fixed point and then measure all other

potentials with respect to that fixed point.

Ill

Figure 6 - Illustration of effect of fluctuating gauge

transformation by measurement of potential

difference along a resistor.

A decides to assign the value zero to the potential at the

left end of the resistor, while B decides to assign the

value zero for the potential to the right side of the

resistor. For an idealized resistor they will have no

trouble comparing their results. For instance, B will
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merely add to all of his potential readings the value of the

total potential difference between the two ends of the resis-

tor. In order to transform his result to that of A's, B

performs a gauge transformation.

directly comparable.

Now let the resistor cease to be idea!_

Their results are then

They will be

looking at a resistor in which the potential is fluctuating

due to thermal noise. A will conclude that the potential at

the right end fluctuate_, while B will conclude that the

potential at the left end fluctuates. This will puzzle both

of them for a moment since each had assigned the value zero

to the potential at one of these two ends respectively, and

by definition the value zero does not fluctuate. In order

for B to check his results with those of A, he will now have

to perform a gauge transformation which fluctuates with time.

Such a transformation is the analogue of a q-number gauge

transformation in the quantum theory.

In general relativity the situation is much the same as

in electrodynamics with one crucial difference. While one

can still construct the generator of an infinitesimal q-

number coordinate transformation, one cannot integrate to

obtain a finite transformation. The infinitesimal generators

do not appear to form a group. In fact, one can prove that
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there exists no ordering of factors in the classical expressions

for the constraints such that the commutator of L and is again
'L

a linear combination of the constraints. Thus it appears that the

shaded area in Fig. 5 is not simply connected; the use of different

coordinate conditions appears to lead to essentially non equivalent

quantum theories. This conclusion stands in direct contradiction with

the principle of general covariance If true, it would mean that, in

principle at least, it should be possible to decide which, of the

infinity of possible coordinate systems, is the one appropriate for

a description of our universe

V. Conceptual Problems in Quantized General Relativity

The field variables of general relativity, the guy, play a dual

role in the theory On the one hand they describe the gravita_onal

field i_ile on the other they c_e as a metric and so _etermine the

geometry of space-time and hence affect all other fields that exist

in the space-time manifold. If we now consider the guv as quantum

field variables they will exhibit the customary quantum fluctuations.

As long as we think of the gu_ as describing the gravitational field

this additional complication seems to offer no more difficulty in

understanding than in the electromagnetic case when we quantize th_h

field. However, when we also use the guy to describe the metric,

many new conceptual problems arise not the least of which is what

do we mean by a fluctuating geometry. I will conclude this lecture

with a brief discussion of some of these problems.

Many of the conceptual problems associated with
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quantizing general relativity are related to measurement

processes. Since general relativity is first of all a geo-

metrical theory, the most natural types of measurements will

involve the determination of space-time intervals, measure-

ment of the gravitational field g and the Christoffel sym-
uv

bols _ _fin, a given coordinate system. Wigner (12) has inves-
I _v)

tigated the question of measuring time intervals in general

relativity. He concluded that the_e seems to be a contra-

diction.

Wigner's argument is as follows: When one measures an

interval of time in some region of space, what one actually

measures is how long it takes for something to happen. For

this purpose one needs an accurate clock. The accuracy in

time measurement is limited by the quantum uncertainty

relation

AEAt _ h (48)

Therefore, if one wants an accurate clock (small At) then

there will be an uncertainty in its energy, and this uncer-

tainty in its energy is related to an uncertainty in its

mass through the relation

(Am)c _ = AE

Thus the smaller At is, the bigger Am must be.

the fluctuations in the clock mass must be very large.

(49)

This means

In
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the limit of infinite accuracy the fluctuations in the clock

mass must be infinite. These fluctuations in mass will in

turn produce similar fluctuations in the gravitational field.

In special relativity, where the metric is forever fixed, such

fluctuations are not a problem since one need not include the

gravitational field in the theory. In general relativity we

can no longer neglect such fluctuations since the gravitational

field is also the metric field and hence affects all other

fields. As a consequence the very notion of a space-time inter-

val and with it the notion of a point in space-time become

questionable and the whole nature of the space-time manifold

uncertain. It has even been conjectured, on the basis of

such arguments, that one must eliminate the concept of points

from the theory since they are unobservable elements in the

theory. At the very least it does bring into question the

process of setting up a coordinate system and the measurement

of distances

A possible way out of this apparent dilemma is to aban-

don the demand for accurate time measurement at a particular

space point and adopt the approach of S-matric theory

wherein one talks only of asymptotic behavior of interaction

systems. Such a procedure has been suggested by Misner. How-

ever, I believe we can learn about the structure of space and

time only by examining the character of the coordinate system

-36-



This does not mean that we have to actually observe these

coordinates. Rather our structure of space-time will deter-

mine to a large extent the type of coordinates we can intro-

duce For example, if space-time were in some way discrete

then we would employ different coordinates from those we

would employ if it were continuous. This in turn would

affect the types of theories we could construct in space-

time. Thus, even if we were never able to make local space-

time measurement of the kind envisaged by Wigner, we could

still have a space-time manifold whose properties would be

known to us through the properties of the coordinate systems

that exist in it.

Another difficulty arises when we try to work out a

Bohr-Rosenfeld argument for the measurement of a gravitational

(13)
field. Bohr and Rosenfeld noted that in electromag_r_tic

theory, when one wants to measure the electric field with

great accuracy, one has to employ very large charges.

Furthermore, since the measurement of the field involves a

measurement of the momentum imparted to the particle we must,

in some way minimize the uncertainty in thi_ measurement.

The uncertainty, _E x, in the x component of the electric

field is related to the uncertainty _Px, of the x component

of the momentum of the test particle by
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LEx = _Px (50)
cat

where c is the charge on the test body and At is the time

taken for the measurement of Ex. The uncertainty in the

momentum measurement is itself limited by the uncertainty

relation _ _ _ so that we have

_E x _ _ (51)
¢_x&t

where _x is the uncertainty in the position of the test

particle. Since we want all three quantities, AE x, Ax and

At to be small, we must use a test body with a very large

charge. However, a large c entails a further difficulty

since we measure the total field present. This includes

the field produced by the test-body. Thus, for large e,

this self-field, _, is also large. Furthermore, we obtain

no knowledge of this field since we do not know the position

and motion of the test body exactly because of the

uncertainty relations. However, Bohr and Rosenfe!d showed

that, by the use of purely mechanical devices

such as springs, it is possible to compensate automatically

for the effect of this self-field. They concluded that it

is meaningful to talk about the value of an electric field

at a point in space-time.

In the gravitational case one can write an expression

analogous to Eq. (35). Here the objects of measurement
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arecomponentstheChristo  elsymbolsLu JThe
{l}component analogous to Ex is 44 . If we assume that the

test body moves along a geodesic then we can show, in a

manner analogous to the derivation leading to Eq. (35),

that the uncertainty in 144_ is:

mAx_t

where m is the gravitational mass of the test body. Again,

in order to specify the graviational field at a space-time

point, we must make all three quantities, _ 44 , Ax, and

At vanishingly small. The requirement that /x 44 is small

means that m must be very large. This large mass will produce

a large field. But Do_ _ the effects of thi_ fiel_ cannot 1_e

compensated for as in the electromagnetic case. First of

all, there are no devices such as springs which will not

produce a gravitational field. Second, we have no way of

determining the amount of compensation needed. Third, once

the mass of the test body becomes large, it will no longer

follow along a geodesic of the field we are trying to

measure, but will follow a geodesic of the combined fields.

Fourth, since the theory is non-linear, the two fields,

external and self-, will not add, so that we can no longer

make use of the geodesic equation to measure the _.

f -%

In both of the above examples we are confronted with
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a new situation which does not occur in ordinary Lorentz

invariant theories. Whenever we try to make a measurement

of gravitational fields at a point we must use very heavy

bodies to overcome the effects of the uncertainty principle.

The introduction of heavy bodies as measuxing instruments

_4 _ s _h_ _,11_ 4_ _ ,,_4_I _ ,.,_,,

Another difficulty is associated with setting up the

initial value problem. The initial conditions are imposed

upon space-like surfaces However, one must know the

geometry of the space-time in order to pick out a space-
i

like surface Classically, one can overcome this diffi-

culty by choosing some surface determined by a condition

on the coordinates such as t = 0, such that this surface

is indeed space-like. For example, one can fix grs in a

coordinate system where gou = - 8ou' such that, on the

surface t = 0 ds 2 = grsdxrdx s - dt 2 > 0. Lichnerowicz

and _e. Foures-Bruhat showed that as the system develops,

the adjoining surface, t = dt, is also space-like.

When we come to the quentum version of the theory, we

are faced with the same problem. The initial state is

represented by functions of grs" We can employ a coordinate

system in which gou = -6ou, and choose the initial surface

to be that defined by t = 0. Then we must choose the
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ensemble of gravitational fields which makes up the eigen states

of the field so that ds 2 > 0. This is easy although it imposes

rather complicated restrictions on our initial state functionals

Now, the problem is, can we be sure that our initial space-like

surfaces remain space-like into the future for all numbers of

the ensemble? In the classical case, for a given set of grs'

one can find a corresponding set of momenta prS which satisfy

the constraint equations which lead to the surface t = dt

being space-like. In the quantum version it is possible that

a surface that was initially space-like might become time-like

or light-like. Such a possibility exists because of the

difficulty mentioned earlier that one cannmt find quantum ex-

pressions for the constraints (20) such that the commutator

of any two of them is a linear combinatioru of the constraints

with all coefficients standing to the left of the constraints

Since the Hamiltonian is itself a linear combination of the

constraints we find that they are not necessarily zero for the

physical states _ which satisfy eqs (39) and (40). As a

consequence the prS may have fluctuations that do not satisfy

the constraint equations at later times and so lead to non-

space-like surfaces.

Thus, both from the formal and the conceptual points of

view, there are serious problems associated with quantizing
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gravity. In all our examples there appear to be incompatibi-

lities between the requirements of quantum mechanics as we

know them and the requirements of general relativity. It is

of course possible that in a complete theory of quantum gravi-

dynamics such difficulties might, in some way, be ameliorated.

One can argue that it is meaningful to discuss the measure-

ment process only on the basis of the complete theory. How-

ever, one does not yet have such a complete theory. Hopefully

such discussions as we have given here, even with the crude

methods used, might indicate this theory and the direction it

should go, or whether it is reasonable to try to construct.
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Preface

These notes were taken from a series of seminars on

Gravitation and Relativity presented at the Institute for

Space Studies, NASA Gbddard Space Flight Center during the

academic year 1961-1962. Professor R. H. Dicke of Prince-

ton University organized the series as an introduction to

the subject for non-experts, emphasizing the observable

implications of the theory and the potential contribution

of space sciences may make towards a better understanding

of general relativity.

The approach has been conceptual rather than formal.

For this reason, this record does not include a complete

mathematical development of the subject, but, we hope,

does contain sufficient mathematics to elaborate on the

conceptual discussions.

The notes were prepared with a certain amount of

editing from a transcript made from recordings of the lec-

tures. The speakers have not had the opportunity to read

and correct the final manuscript. Hence, we accept res-

ponsibility for errors and omissions.

H. Y. Chiu

W. F. Hoffmann



I •

-2-

THE SEARCH FORANACCEPTABLE FORMULATION OF MACH'S PRINCIPLE

Inertia as a Consequence of an Interaction between the

Accelerated Test Particle and all the Rest of the Universe

Acceleration can have no meaning unless there is something

with respect to which the acceleration takes place. The

acceleration with respect to abSoiute space that Newton speakl

about has to be understood as acceleration with respect to the

stars and matter in the universe. These two sentences state

in oversimplified form the argument of Mach (1) . From it he

went on to make conclusions about the origin of inertia•

Inertia - being tied to acceleration - must arise from inter-

action between the object under study and all the other mass

in the universe. Thus Mach's principle might be stated in this

form: (Formulation 1). The inertial properties of an object

are determined by the distribution of mass-energy throughout

all space.

Inertia as the Radiative Component of the Gravitation_l

Force

Mach's principle, together with Riemann's idea that the

geometry of space responds to physics and participates in

(i) Ernst Mach, Die Mechanik in ihrer Entwicklunq (Leipzig, ist

ed. 1883 .... , 7th ed. 1912, 9th ed. 1933; latter translated

into English by T. J. McCormack as The science of mechanics,

Open Court Publishing Co., La Salle, Illinois, 1960).
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physics, were the two great currents of thought which Einstein,

through his powerful equivalence principle, brought together

into the present day geometrical description of gravitation

and motion. In the course of this work Einstein identified

gravitation itself as the source of the interaction by which

- according to Mach- one object affects the inertial properties

of another. What is important in this connection is not the

familiar 1/r 2 - proportional static component of the gravitational

force, but the acceleration-proportional radiative component

of the interaction (Table 1). Einstein discussed this point

a little in his book (2) in connection with the idealized experiment

of Thirring. This description of the inertia of a given particle

as arising from the radiative component of its interaction with

all other masses in the universe has been looked into a little

further by Sciama (3) and Davidson (4) . The inertial term ma is

dropped from Newton's equation of motion. In its place appears

the sum of t_e radfat_ve interactions

G m k f (i)ma cs r

k

(2) A. Einstein, The Meaning of Relativity, Princeton University

Press, Princeton, New Jersey, 3rd ed., 1950, p. 107;

Scientific American, p. 209, April %950.

(3) D. W. Sciama, Monthly Notices Roy. Astron. Soc. 11__/3,34

(1953); Scientific American, p. 99, February 1957.

(4) W. Davidson, Monthly Notices Roy. Astron. Soc. 11____7,212

(1957)
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This term gives a reasonable order of magnitude account of inertia

if the dimensions of the universe are of the order of 1010 light

years and if the effective average density of matter is of the

order of 10 -29 g/cm 3 (5)

Inertia is Tied to Geometry and Geometry is Directly

Governed by the Distribution of Mass-Enerqy and Enerq 7

Flow

The analysis of Thirring and Einstein brings this "sum

for inertia" into closer connection with the ideas of general

relativity. On the one hand the inertial properties of a test

particle are expressed in terms of the metric tensor guy" On

the other hand the agencies responsible for changes in this

measure of inertia are characterized not merely by density,

but by the entire stress-energy tensor T. Thus Thirring

and Einstein write the change

huv = g_ - _Uv, (2)

h = _h_ (3)

of the metric in a local Lorentz system, due to a change _T

in the form

.

(5) For "a discussion of present information on the density and

size of the universe, see for example J. Oort and J. A.

Wheeler in Onzi_me consei! de physique Solvay: La structure

et l'_volution de l'univers, Editions Stoops, Bruxelles,

1959 (referred to hereafter as S_U).



--5--

TABLE I. Static and radiative components of electromagnetic and

gravitational forces compared and contrasted. The quantity f is

an abbreviation for a dimensionless function of the angles _etween

the lines of acceleration of source and receptor and the line

connecting these two objects.

Electromagnetism Gravitation .....

Static or near part

of interaction

e I e____s_ Gm_m s

rs fs

Radiative or distant

component

e i e s a a f Gm I m_ a s f

c s r c 2 r
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huv _ guv h = (8nG/c 4 [ST]retd3x (4)

r

This expression remains a good approximate solution of Einstein's

field equation so long as the geometry of the regions where the

mass-energy is located does not differ substantially from the

local Lorentz geometry at the position of the test particle.

Looking at Eq. (4), and recalling that in relativity theory

the inertial properties of a test particle are determined

by the metric, one is led to formulate Mach's principle in

the following form: (Formulation 2). The qeometry of space-

time and therefore the inertial properties of every infini-

tesimal test particle are determined by the distribution of

enerqy and enerqy flow throuqhout all space.

Many Objections to Mach's Principle

That Mach's principle in anything like this form makes

sense has been questioned on many sides for the following

reasons:

(1) Einstein's field equations

1 R = (8nG/c 4) T
R _ - _ g_v _tv (5)

are non-linear. It is wrong in principle to try to express

the solution guu as a linear superposition of effects from

the T in various regions of space.
Uv



A

(2) The quantity i/r in the integrand is not a well

defined quantity in an irregularly curved space.

(3) If in the Friedmann universe one conslders the

contributions to the inertia at a definite point in space-

time from more and more remote points, where t,he retarded

value of the stress-energy tensor is Tuvre t, one is

forced to go back to earlier and earlier moments of time.

Ultimately one comes to a time when the system was in a

singular state. What does one do then about the contribution

of T to the inertia:
_vret

(4) The elementary sum in (i) for the coefficient of

inertia envisages a radiative interaction between particle

and particle. But now can stars at distances of 10 9 and

I0 I0 light years respond to the acceleration of a test

particle here and now in such a way as to react back upon

this test particle at this very moment? Is this difficulty

not argument enough that this elementary formulation should

be dropped? But when one turns from this picture of two-

way travel of gravitational radiation to the Thirring-Einstein

calculation where only one direction of travel comes into

evidence, does one not encounter an ambiguity in this sense,

that one could use advanced interactions just as well as
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retarded interactions - or any combination of the two - in

obtaining a solution of the linearized field equations?

If the advanced and retarded expressions for the metric in

terms of the distribution of mass-energy differ from each

other - as expected - will not one be forced to conclude

that one expression is wrong? And if one is wrong will it

not be likely that both are wrong?

(5) Will not the I/r - dependence of the supposed in-

ertial interaction make the inertial properties of a test

particle depend upon the expansion and recontraction of the

universe, and the proximity of nearby masses, in a physically

unreasonable way?

(6) How can it make sense to speak of the distribution

of mass-energy (and energy flow) as determining the geometry?

One cannot specify where one mass is, let alone the entire

distribution of mass, until one has been given the geometry:

But then what is there to be determlned?

(7) Why spoil the beautiful logical structure of

relativity theory by mixing up with it anything so vague

and so lacking in mathematical sharpness as Mach's prlnciple?

Why try to word it in careful 20tn century language when it

is an outworn 19tn century idea that ought to be dropped at

once and for all time?
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Solutions of Einstein's Equations not Produced but

Selected by Mach's Principle

The answer is that Einstein's equations are not enough.

Differential equations in and by themselves typically do not

suffice to define a solution. They must be supplemented by

a boundary condition. Mach's principle is required (Formulation

3) as a boundary condition to select allowable solutions of

Einstein's equation from physically _nadmissible solutions.*

*Note added after completion of this manuscript: This concept

of Mach's principle as principle for the selection of solutions

of Einstein's equations appears earlier in the discussion of

J. A. Wheeler on pp. 49 - 51 of SEU, and especially in a

recent article by H. HSn in E. BrUche, ed., Physikortaqunq

Wie_____n,Physik Verlag, Mosbach/Baden, 1962, where on p. 95

HSnl proposes two theses: (i) das Machsche Prinzip est als

kosmologisches Prinzip ein Auswahlprinzip; d. h. es m_glicher

L_sungen des kosmologischen Problems einige wenigen aus

zusondern, die als physikalisch sinnvolle Weltmodelle

_berhaupt in Frage kommen. (2) Das Machsche Prinzip l_sst

sich nur f_r r_umlich geschlossene, endliche Weltmodelle

in widerspruchloser Weise durchfUhren; es ist daher zu

vermuten, dass die Forderung des Mach-Prinzips mit der

Forderung eines endlichen Universums Uberhaupt identisch ist.
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This kind of selection principle is so familiar in electro-

statics (Table II) that it generally goes without even a

name. Only when Poisson's equation is supplemented by such

a boundary condition does it lead to the (l/r) law of action

of a charge. Tnis (l/r) law of action furnishes the usual

basis for saying that the distribution of electric charge

uniquely determines the distribution of electric potential.
L .

Cases Where the Boundary Condition Cannot be Applied

Reqarded as Idealizations of Cases Where It Does

Apply and Where It Does Make Sense

The boundary condition that the electrostatic potential

shall fall off at large distances is noteworthy for what it

does not do as well as for what it does do. It does not

provide a way to calculate the (i/r)-law of action. Only the

differential equation does that - giving in addition many

other solutions. Moreover, one often considers in electro-

statics problems where the requirement of Table II, "The

potential must fall off at great distances" cannot be

satisfied. By way of illustration, consider the problem:

"Given p(x,y,z) = Po cos kz; find V(x,y,z)" : Thus one can

choose between accepting the problem and giving up the

generality of the boundary condition; or upholding the

boundary condition at all times and modifying the problem.



-Ii-

TABLE II. Boundary conditions in electrostatic and in gravi-

tation theory according to Formulation 3 of Mach's principle:

a boundary condition to select allowable solutions of Einstein's

equations from physically inadmissible solutions.

....... Electrostatics Gravitation Theory

Differential

equations

V2V = - 4rip The four of Einstein's

equations which have to

do with geometry on a

space-like hypersurface.

Source terms Electric charge

density

Density of energy and

energy flow.

General

solution
V= J r

(m)
+_Cnmr", n (8, _)

Geometry which

(a) extends to spatial

infinity or

(b) is somewhere singular

or

(c) is closed up and free

of singularity.

Principle of

selection of

physical

solution

Potential must fall

off at great dis-

tances

Geometry must be of class

(c) (To admit singularities

is to admit points where

the equations are not

really satisfied.

Consequence of

this principle

and also another

way of formulating

this principle.

Potential is

uniquely deter-

mined by the

distribution

of charge

Geometry of spacetime must

be uniquely determined by

the distribution of energy

and energy flow over the

original spacevlike hyper-

surface.
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One can say that the infinite cosine wave distribution of charge

is only a mathematical idealization of a physical distribution

of charge which is nearly of cosine character over a great

region, as illustrated, for example, by an expression of the

form

9 9 9.
p(x,y,z) = Po cos kz exp [-(x- + y" + z-}/a2],

where the Gaussian breadth a is very large. On this choice

of interpretation the boundary condition continues to make

sense, and the potential continues to be determined uniquely

by the distribution of charge.

(6)

Asymptotically _lat Geometry Expressed as Limit of

Closed Space

Similarly in general relativity one can find situations

which are not compatible with the boundary condition of

Table II -- and therefore not compatible with formulation 3

of Mach's principle -- and which nevertheless can be

translated over into situations which are compatible with

the boundary condition. Consider for example a single

spherically symmetric concentration of mass in otherwise

empty space. Associated with this mass is the familiar

Schwarzschild 4-geometry. This geometry is asymptotically

flat at infinity. In this spacetime the inertial properties

of an infinitesimal test particle approach indefinitely
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closely to the Newtonian expectations at indefinitely great

distances from the mass. Consequently it is unreasonable

to think of the central mass as responsible for these

inertial properties. If one accepts this situation, he

cannot uphold Mach's principle either as Mach originally

stated it or as it is reformulated here, as a boundary

condition to select solutions of Einstein's field equations:

(1) the inertial properties of test particles -- not

being attibutable to the one mass that is present

-- are therefore not assignable to Mach's "dis-

tribution of mass throughout all space;" and

(2) the Schwarzschild geometry does not describe a

closed universe.

Therefore rule out around a center of mass a space that

becomes flat at infinity. In other words, apply the geo-

metric boundary condition of Table II to exclude the

Schwarzschild geometry. Follow the example of electro-

statics, where for example in Table II an infinite

cosine distribution of charge was ruled out because i_

was incompatible with the boundary condition for the

electrostatic potential at infinity.

The idealized situation that is pushed out of the back door as

physically unacceDtable comes in again at the front door
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in new clothes both in electrostatics and in general relativity.

(Table III). Consider a geometry which i_ss compatible with the

boundary condition -- which i! closed and free of singularity

at some initial time, or more precisely on some initial spacelike

hypersurface. To construct such a geometry, take not a single

spherically symmetrical distribution of mass, but many such

mess centers. Let the number of centers and their spacing

be so chosen as to curve up the space into closure (7) . The

dynamics of such a lattice universe before and after the

(7) For a detailed but approximate treatment of the dynamics of

such a lattice universe, see R. W. Lindquist and J. A. Wheeler,

Rev. Mod. Phys. 29, 432 (1957). For a precise analysis, consider

the initial value problem at the moment of time symmetry or

maximum expansion: (3)R = (16_G/c2)p. Here p is the density of

mass, equal for example to Po inside each center of attraction,

and vanishing elsewhere. Solve this equation by modifying the

geometry of a 3-sphere of uniform curvature and radius a,

a2Ed_ 2 sin2y (d82 sin28d_) ]
dS_dea I = + +

by a conformal factor _:

ds 2 = V4dS_dea I

The initial value equation takes the form

72_ + (2_G/c2) p_ 5 - (3/4a2)_ = 0

Here the operator 72 is calculated from the metric of the ideal
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moment of time symmetry agrees within a few percent or less

with the dynamics of the Friedmann universe, with its

filling by a uniform dust (zero pressure:) and its ideal

uniform curvature. The corresponding expansion and recon-

traction of the lattice universe shows up, not so much

through any change in the geometry interior to the typical

Schwarzschild zone, as through a change in the place of join

between one zone and the next. The interface moves outward

from the centers of attraction on each side of it following

the law of motion of a stone thrown out radially. It

reaches a maximum distance. Then it falls back again towards

both mass concentrations simultaneously. In this way the

motion of these centers towards each other comes into evidence.

3-sphere. This equation is to be solved throughout one lattice

zone subject to the conditions (I) that _ have the appropriate

symmetry within that zone and (2) that its normal derivative

vanish at the zonal boundary. This is an eigenvalue problem

which determines the radius a of the comparison sphere. When

gravitational radiation is present the metric cannot be

represented in suc_ a simple form. However, there is still

typically a factor like _ to be found -- governed now not

only by the distribution of mass, but also by the distri-

bution of gravitational radiation.
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Table III. Schwarzschlld geometry envisaged as the limit of

the geometry of a closed lattice universe when the size of

the typical lattice zone is allowed to go to infinity. This

limiting process is compared in the table with the analogous

!__m_iting procedure in electrostatics. Notation: (I) m*(cm)

= (G/c2)m(g), mass at center of each lattice cell (2) 4_b3/3,

volume of lattice cell at "instant" (spacelike hypersurface)

of maximum expansion (3) a, radius of curvature of a comparison

universe of uniform density and uniform curvature, also at

the instant of mirror symmetry between past and future. This

radius is determined as follows in terms of m* and b: The

"Schwarzschild cells" are joined together on boundaries which

are not sufficiently far out for the geometry there to be flat.

The curvature of the Schwarzschild geometry in a local Lorentz

frame in a plane perpendicular to the zonal radius is R =
2323

2m*/b 3. Identify this quantity with the curvature in a typical

plane in the uniform comparison universe, R2323 = i/a 2. Thus

find a 2 _ b3/2m *. Alternatively, write down the oo component

of Einstein's field equations (the principal initial value

equation of Yvonne Foures-Bruhat) in the form

(3)
/energy "h

R + (Tr NK) 2 - Tr _K2 = 2(8_G/c4)\density /

Note that the extrinsic curvature tensor Kij or "second
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fundamental form" vanishes on a time-symmetric spacelike hyper-

surface. Note also that the scalar curvature invariant of a

3-sphere of radius a, expressed in terms of the physical com-

ponents (carat symbol:) of the curvature is:

(3) (3)_i I (3)_ (3)9 _R = +  '22+ "'33= (9i212+ -9i3i3)+, 2i2i ....
-ZJZJ "

(_3131 + _3232 ) : 6/a2" Identify the density of mass with

m/(4_b3/3). Thus have (6/a 2) _ (16_G/c2) (3m/4_b 3) or again the

result a 2 _ b3/2m *. The number of lattice cells is approximately

N __ (volume of comparison universe )/ (volume of cell)

2_2a3/(4ub3/3) = (3_/2)5/2(b/m*) 3/2 (goes to infinity as

size of typical cell goes to infinity).

Electrostatic Example from

example general relativity

Source (before

modification)

Effect of interest

Is "effect" so

uniquely associated

with "source" in this

idealized case that

one can say effect is

"produced" by source?

Infinite periodic

charge distribution

p = poeOS kz

Electric potential -

and thence the elec-

tric field

No - can add to V

any number of har-

monics of form

rny (m) (@, _n)
n

Single spherically

symmetric concentration

of mass in otherwice

empty space

Metric of spacetime -

and thence the iner-

tial properties of

every infinitesimal

test particle

No - the asymptotically

flat Schwarzschild geo-

metry and many other

empty space geometries

solve Einstein's

equations for this

source "distribution".



-18-

Electrostatic Example from
example general relativity

Does "effect" satisfy
the boundary condition
listed in Table II

Modified situation
which i__sscompatible
with the boundary
condition

Scale factor asso-
ciated with this new
source

Is source now well
defined?

When specification of
"source" has been com-
pleted, is it reason-
able to think of "ef-
fect" as well deter-
mined by this speci-
fication plus boun-
dary condition?

No - none of these
expressions for V
falls off as fast
as (l/r) at great
distances

P = Po cos kz
times exp (-r2/a 2)

Range a of charge
distribution

Yes.

Yes - in this
event one can
prove potential
is uniquely deter-
mined by distri-
bution of elec-
tricity.

Schwarzschild geometry
as normally conceived
does not describe a
closed universe.

Many such masses spaced
with reasonable unifor-
mity through a closed
universe.

Effective radius b of
typical Schwarzschild
zone.

No. Must specify what
gravitational waves if
any are present-in other
words, must specify
otherwise undetermined
features intrinsic to
three geometry in which
the masses are imbedded
at the moment of time
symmetry.*

Yes - expect other
features intrinsic to
this three geometry are
now uniquely deter:nined

by (oo) component of

Einstein's equation plus

boundary condition of

closure;**Mach's prin-

ciple satisfied.

*See for example the "modified Taub universe" discussed in the text

as an alternative to the lattice universe as a solution of Einstein's

field equations which also satisfies hhe condition of closure.

**This uniqueness can be established in the case where the lattice uni-

verse contains no gravitational waves along the lines outlined in

footnote 7. No investigation has been made of uniqueness when gravi-

tational waves are present in this universe. However, there is a
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Electrostatic Example from

example general re !ativity

Limiting procedure

now envisaged

For each finite value

of the parameter a or

b is the relevant

boundary condition

satisfied?

Is boundary condition

satisfied for infinite

value of this parameter?

Range a of charge

distribution goes

to oo

Yes - V falls off

as i/r or faster

at large r

No - V does not

fall off

Effective radius b of

Schwarzschild zone goes

to

Yes - Schwarzschild

zone is a piece of a

closed universe in

which Mach's principle

can be considered to

apply.

No - Schwarzschild

geometry is asymp-

totically flat.

related problem where the uniqueness of the 3-geometry - for

specified distribution of gravitational radiation - has oeen

established as a consequence of the closure condition (6) .

(6) D. Brill, Ann. of Phys. _, 466 (1959); H. Araki Ann. of Phys.

_, 456 (1959); J. A. Wheeler, Geometrodynamics, Academic Press,

New York, 1962, p. 56. This book is cited hereafter as GMD.
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The time for the expansion and contraction of the lattice universe

- and of the boundaries of each Schwarzschild zone - is

I time for expansion I /radius of latticeh
and recontraction = _ |universe at J

in length units / kmaximum expansion/

/radius of one Schwarz-\ 3/2 / twice mass at centerVl/2

n ( schild zone at maximum] [ of zone expressed in}
kexpansion _ length units /

This quantity can be made arbitarily large relative to the time

required for light to cross one Schwarzschild zone by making the

radius b of the typical zone sufficiently large.

(7)

Non-Uniform Convergence to Flat Space Limit

The order of the participants is important. Let one par-

ticipant, A, select (i) any arbitrary but finite distance from

one center of mass and (2) any arbitrary but finite length of

time and (3) any arbitrarily small but non-zero departure from

the ideal Schwarzschild geometry which he is willing to tolerate.

Then the other participant, B, can pick an effective radius for

the typical Schwarzschild zone at the moment of maximum expansion

which is so great that the geometry inside that zone agrees with

the ideal Schwarzschild geometry (I) to within the specified

limits of accuracy (2) out to the stated distance and (3) for

the stated time. However, if B acts first, and specifies the
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zone radius at the moment of maximum expansion, then A can

always point to places so faraway that the geometry there

totally disagrees with the continuation of the Schwarzschild

geometry of the original zone. A can even point out that the

space is closed and compatible with Mach's principle. Thus

A concludes that the geometry is asymptotically flat or closed

according as he is forced to make the first move or allowed to

wait until B has fixed on dimensions. That A's conclusions

depend upon the order of his move can be said in another way:

The convergence to the limit of an infinitely great lattice

universe is non-uniform.

Other Examples

The ideal lattice universe is no more than one of many

conceivable examples to illustrate how one can consider as

closed - and compatible in general terms with Mach's principle

- geometries which ostensibly are asymptotically flat. Three

more examples may give a slight impression of how wide is the

range of allowable geometries.

Lattice Universe with Gravitational Radiation

In the lattice universe there may be present in addition

to the "real" masses also the effective mass indirectly

contributed by gravitational radiation. Then the inertial
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properties of test particles are affected by both sources of

mass energy (7).

Modified Taub Universe

It is not necessary to supply any "real" masses additional

to the one original mass in order to secure a closed universe.

Gravitational waves of sufficient strength will supply the

required curvature. This one sees from the example of the Taub

universe (8) . There gravitational radiation alone suffices to

curve up the space into closure. In this 4-geometry consider the

hypersurface or 3-geometry defined by the instant of time symmetry

or maximum expansion. Perturb this geometry to the extent necessary

to introduce a spherical ball of matter, at first arbitrarily

small, eventually large or denser or both. Close to this mass

the geometry is nearly Schwarzschildean. However, deviations

from that limiting geometry become very great at distances

comparable to the effective radius of the Taub universe (9) . In

this universe it is not reasonable to speak of a geometry

primarily determined by "real mass" and perturbed in only a

(8) A. H. Taub, Ann. of Math. 5__3, 472 (1951)

(9) A first order analysis of deviations from Schwarzschild geometry

has been given by T. Regge and J. A. Wheeler, Phys. Rev. 10___88,1063

(1957), but no attempt is made there to fit on to the Taub solution

a greater distances.
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minor way by gravitational radiation. On the contrary, the

gravitational radiation is the primary determiner of the 4-

geometry - and on the inertial properties of test particles.

The one "real mass" produces only minor perturbations in the

geometry except in its own immediate ___a

Unmodified Taub Universe

The fourth example is the Taub universe itself, free of

any "real matter" at all. This solution of Einstein's equations

for a closed empty space is interpreted in the appendix as a

special case of a Tolman radiation filled universe in which

(i) Tolman's electromagnetic radiation is replaced by gravi-

tational radiation; (2) this gravitational radiation, instead of

bein9 effectively isotropic, is described by a single hyper-

spherical harmonic_ and (3) this harmonic has the lowest

possible order, or greatest possible wave length, compatible

with the dimensions of the model universe.

Does a Relation Between Inertia at One Place and

Gravitational Radiation at Other Places Siqnify

Circular Reasoning?

Regardless of the details of the Taub universe, here is

a closed space in which the inertial properties of every

infinitesimal test particle are well determined. Yet there
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are no ordinary masses about, to interactions with which one

can attribute the inertia of this test particle. Therefore,

if Mach's principle is still to make sense, it is necessary to

conclude that the distribution, not only of mass energy, but

also of gravitational radiation, has to be specified in order

completely to determine inertia - or, in the words of general

relativity, completely to determine the geometry of spacetine.

But gravitational radiation itself is described as an aspect

of geometry and nothin_ more. Consequently one seems to be

caught in a logical circle in trying to formulate Mach's

principle. Apparently one has to give th___eeqeometry in advance,

not only in order

(I) to say in any well defined way what one means by

the term "distribution of mass-energy", but also

(2) to specify what gravitational radiation is present,

so that one shall thereby be enabled

(3) to determine th___eeqeometr¥ of spacetime!

Evidently one can never feel happy about a formulation of Mach's

principle that seems to contain this kind of circular reasoninj.

Therefore it is essential to demand a mathematically well defined

statement of his principle if Mach's ideas are to be considered

as having any relevance at all for present day relativity

physics.
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Not Circular: Specify 3-Geometry, Determine 4-Geometry

Now for this mathematical formulation: It will be found

to resolve the question of circular reasoning in this way, that

what is specified is 3-dimensional geometry, and what is

thereby determined is 4-dimensional geometry. At the same time

it will help to clarify which features of gravitational radiation

are freely disposable (field "coordinate" and its rate of

change), and which features of the geometry are thereby deter-

mined (field "momentum").

II. 3-GEOMETRY AND ITS RATE OF CHANGE AS KEYS TO THE PLAN OF

GENERAL RELATIVITY.

What is the Plan" of General Relativity?

It is known often to help in answering one question to ask

another. Therefore it is fortunate for the search for a mathe-

matical formulation of Mach's principle - a search now physically

motivated - that another issue is currently under discussion.

As Professor J. L. Synge stated it at the Warsaw conference,

what is the plan of general relativity? What quantities can

one freely specify, and what quantities are thereby determined?

What is the inner structure of the dynamic theory of a

geometry governed by Einstein's field equations?

Plan i: Initial Data on a Liqht-Like Hypersurface

One plan of dynamics starts with a light-like hypersurface.
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In this approach as applied to the mechanics of a system of

particles, one specifies the appropriate number of coordinates

and momenta at the times when the respective world lines cross

this null hypersurface. This formulation of mechanics has been

investigated by P. A. M. Dirac and V. Fock. The corresponding

formulation of geometrodynamics, particularly as relevant to

the study of gravitational radiation, has been explored by R.

Penrose, H. Bondi, R. Sachs and others, and has been described

in a comprehensive report by Sachs at the Warsaw conference.

However, this approach is not closely connected with the

formulations of dynamics which are most widely used in other

branches of physics. Whatever its relations with Mach's

principle, they cannot be reported here because they have not

been investigated.

Plan 2: Coordinates and Momenta -- or Intrinsic

Geometry and Extrinsic Curvature -- on a Space-Like

H__ersurface

Another plan of dynamics is more familiar. In particle

dynamics give coordinates and momenta at points on the

respective world lines which have a space-like relation each

to the other. In electrodynamics give the field "coordinates"

and "momentum" -- the magnetic field B(x I, x 2, x 3) and the
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electric field E(x I, x 2, x 3) --everywhere on a space-like hyper-

surface. In geometrodynamics again give on a space-like hyper-

surface the field coordinates and momenta -- this time the

3-dimensional geometry intrinsic to this hypersurface,

ds 2 = (3)gik(xl,x2,x3)dxi__xk (8)

and the "extrinsic curvature" or so-called "second fundamental

form ,'(I0') telling how this hypersurface is curved -- or to be

curved --with respect to the enveloping -- or yet to be

constructed -- 4-dimensional geometry. When the 4-geometry

written in the form

de2 = -dT 2 = (4)g_Bdx_dx8 =

with the condition

X O = X O*

(3) gik (x°, xl' x2' x3 )dxidxk

' 2 :-dxidx ° +((3)gikNiNk-N2)(dx°) 2

(i0)

specifying the hypersurface in question, then the extrinsic

curvature tensor is given by the expression (II)

(_) See for example L. P. Eisenhart, Riemannian Geometry,

Princeton University Press, Princeton, New Jersey, 1926

(ll) See R. Arnowitt, S. Deser and C. W. Misner, Phys. Rev.

122, 997 (1961) and earlier papers cited by them. This

group of papers is referred to hereafter as ADAM. See

also their chapter in L. Witten, editor, Gravitation:

an introduction to current research, John Wiley, New

York, publication scheduled for 1962. This book is

referred to hereafter as GICR. See also P. A. Dirac,

Proc. Roy. Soc. London A246, 333 (1958); Phys. Rev. iI___44,

924 (1959); Phys. Rev. Letters 2, 368 (1959).
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Kik = - (I/2N o) (5 (3 )gik/_X° - Ni! k - Nkli), (ii)

in which x ° is understood as being fixed at the value x °*. Here

the vertical stroke is used to denote covariant differentiation

with respect to the 3-geometry of the hypersurface, in contra-

disi_inction to the semicolon that marks covariant differentiation

with respect to the 4-geometry. In terms of the extrinsic

curvature tensor and its trace, the geometrodynamical momentum

(12)
is

n ik = - ((3)g)½(Kik - (3)gikTr K) (12)

Interpretation of the Four Potentials or Metric

Coefficients N O and N k as "Lapse Function" and "Shift

Function"

Some interpretation of the ADaM potentials N_ is

appropriate. Imagine two thin ribbons of steel, distinguished

from each other by the fact that one has painted on it the

label x °' = 17.23; the other, x °'' = 17.27. It is desired to

construct out of these ribbons a rigid curtain. Paint cross-

lines on the one ribbon at intervals which may gradually

increase or gradually decrease but which never change regularly

or erratically. Label them x' = 16,17,18... Do the same on

(12) This expression comes from ADAM.
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the second ribbon, taking care that the new pattern of cross-

lines is not widely different from the old pattern. Weld

perpendicular uprights or "lapses" to the first strip at

x' = 16, 17,18 .... As soon as these uprights have been cut

to the _'_ I^_. _^_ !y _ _'h,= _h__ .... _,,_ .... , j ...... perpendicular =.. -

points on the upper strip, and welded fast, the structure

-- with all the curves thus forced into it -- will be

determinate and rigid. To the waiting craftsman the

architect sends two functions, No(x' ) and N' (x'), the "lapse

function" and the "shift function". The worker tabulates

both at x' = 16,17,18 .... In two further columns he

tabulates for the same values of x' the product of N O and

of N' by the number (x °'' - x °' ) = 0.04. The one column tells

him to what heights to cut off the uprights which he has

welded to the strip that is lying down. The other tells

him how far one way or the other to shift upper ends before

he welds them to the upper strip. At x' - 18 let the. value

of what might loosely be called N'dx ° be 0.5. This implies

that the corresponding upright is welded at its bottomto

the cross line marked x' = 18. The upper strip is shifted

0.5 coordinate units to the right. Thus the "lapse" is

welded to it at a cross line marked x' = 17.5. How the

"shift" changes from place to place -- and how much the
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spacing between qnecoprdinate mark and the next differs between

the upper and lower steel sheets -- together determine'how much

curvature is built into the curtain. Along this line of

reasoning, generalized to three dimensions, one sees at once the

reason for the mathematical structure of Eq. (11).

Intgrpretation i n Terms of the _Length of the Normal and

the Difference in Spac!Coordinates at Its Two End|

To state the same interpretations of NO and _ in other

words, return to expression (9) for the distance between a

point (x°,xl,x2,x 3) that lies on one hypersurface, x° - con-

stant, and another point (x° + dx °,... ,x3 + dx 3) on another

hypersurface, x ° + dx °. Here the dx's are thought of as

small but finite quantities. Let dx ° be kept fixed (at the

value dx O x O"= - xO* - 0.04, for example!) but on the

hypersurface so selected let one point, then another, be

tried until the invariant separation between it and the

fixed point on the lower surface is extremized. Vary d_ 2

with respect to dx k and set the coefficient of 6dx k equal

to zeroz

Solve

2(3)gikdXi + 2 Nidx° = 0

for dx i and find

dx i = -(3)gikNkdxO = _ Nidx o

(13)

(14)
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The extremal value of the separation comes out -- reasonably

enough -- to be time-like:

d7 = NodX °. (15)

Thus the "lapse function" N represents the proper time
o

separation between two hypersurfaces -- measured normally --

per unit of difference in their time coordinates. The

vectorial "shift function" N i represents the coordinates at

the base of the normal diminished by the coordinates at the

summit of the normal, this difference again being referred

to a unit difference between the time coordinates of the two

hypersurfaces.

Lapse and Shift Functions Required in Addition to

3-Geometry to Define 4-Geometry

Evidently it is not enough _o specify the geometries

(3)gik intrinsic to a one parameter family of hypersurfaces

in order to have a well defined 4-geometry. One must in

addition tell how these hypersurfaces are related to each

other. One must tell how far apart the surfaces are ("lapse

function") and how they are displaced space-wise one with

respect to another ("shift function").

Arbitrary Lapse and Shift Functions Plus Arbitrary

3-Geometry Determine Field "Momentum"; but Arbitrary
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Field "Momentum" and Arbitrary 3-Geometry are Ordinarily

Incompatible.

From the field "coordinate" (3)gik and its rate of change

with respect to the parameter x °, plus information about the

"lapse" and "shift', functions of position one can determine

the "extrinsic curvature"

"momentum" (Eq. (11)).

Kik and the associated field

However, the converse is not generally

true. If the field "coordinate" (3)gik and the field

"momentum" or the extrinsic curvature Kik are both specified

arbitrarily, they will ordinarily be incompatible. Tn__ee

independent specification of the field coordinate and the field

momentum is the wrona way to define initial value conditions

in qeneral relativity.

The Initial Value Equations

Tne incompatibility of arbitrary intrinsic geometry of

field "coordinate" (3)gik with arbitrary extrinsic curvature

or field "momentum" _ij follows from four of Einstein's ten

equations. These initial value equations (13) nave to do with

(13) K. Stellmacher, Math. Ann. 115, 136 (1937); A. Lichnerowicz,

J. Math. Pure Appl. 2_33, 37 (1944); Helv. Phys. Acta Supp. _, 176

(1956); Theories relativistes de la qravitation et de l'electro-

maqnetisme, Masson, Paris, 1955; Y. Foures-Bruhat, Acta Math. 88,

141 (1952); J. Rational Mech. Anal. 5, 951 (1956); and the chapter

by Y. Foures in GICR.
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conditions o__nnthe space-like hypersurface:

I

(3_ 2 2 _energy
+ (Tr _K) - Tr _K = 2(8uG/c4) _densityJ

k

(Ki k 6 i Tr K)_ = (8nG/c 4) _density.of fl.ow of- _ kenergy in i-dlrectionj

Tnese initial value equations pose in sharpened form the issue,

what is the plan of general relativity: what quantities

(I) can be freely and independently specified, and yet

(2) suffice completely to specify the past and future of

the four-geometry?

Plan 3: Specify Completely Independently the Field

Coordinates on Two Hypersurfaces

This question leads in turn directly to the two-surface

formulation of dynamics, where one specifies no momenta, only

coordinates (or conversely) -- but coordinates on two hyper-

surfaces rather than one. (14) Moreover, the field coordinates

on the one surface are specified quite independently of those on

the other surface. The complete freedom that one has in this

way of specifying the initial value data would seem to be what

one wants when he asks for a workable statement of the _ of

general relativity (Table IVY.

(16)

(17)

(14) The following is based on a paper of R. F. Baierlein, D. H.

Sharp and J. A. Wheeler, Phys. Rev. 126, 1864 (1962), which in

turn is based on (i) the A.B. Senior Thesis of David Sharp,

Princeton University, May 1960 (unpublished) and (2) an analysis

by R. F. Baierlein which led to the variational principle of

Eq. (31).
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Table IV. The plans of electromagnetism and general relativity as

expressed in terms of the two surface formulation of dynamics. The

field "coordinates" are specified on two space-like hypersurfaces--

most simply on two hypersurfaces which have an infinitesimal separation.

Electromagnetism Gravitation ....

The physically signifi-

cant field quantities

The coordinate- inde-

pendent object

which they define

The dynamic equations

which tell how this

object changes from

place to place

The potentials nor-

mally introduced to

simplify the analysis

of these equations

Notation used for

these potentials when

spacetime is sliced

into spacelike hyper-

surfaces

_omponents of the electro-

magnetic field

A 2-formz a honeycomblike

structure of tubes of

force

Max-well's 8 equations

The 4 components of the

electromagnetic poten-

tial, A s .

The magnetic potential

A with components Ak
and the electro-

static or scalar po-

tential _ = - A o

Components of the

Riemann curvature

tensor

The intrinsic

structure of the 4-

geometry in the

neighborhood (cor-

rections to the

Euclidean pattern

of distances between

one point and another

in a great table of

local "airline"(geo-

desic) distances

Equations that refer

directly to the cur-

vature components

The 10 components of

the metric tensor g
U_

6 components of 3-

metric (3)gik intrin-

sic to a slice; the

normal proper time

separation NQ between
two hypersurfaces per

unit of difference in

their time coordinates;

and the differences N--[

(or more conveniently

Nk = (3)gkiNi between
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Electromagnetism Gravitation

The dynamical problem

as formulated in varia-

tlonal language for a

region of spacetime

bounded by two space-

like hypersurfaces

a ' and o"

Give A' on _' and A" on

o"; iF between tak any
trial functions _A(x °, xl,

x2,x 3) and _(xO,x_l,x2,x 3)

calculate action integral_

then vary the four poten-

tials until the action is

extremized.

The simpler version of

this variational prob-

lem relevant for the

formulation of initial

value problem and Mach's

Give A(xl,x2,x 3) and

bA/bt ; have a simpler

action principle in

which _(xl,x2,x 3) is

the only function to be

principle= the two hyper- adjusted.

surfaces have an infin-

itesimal separation.

Variational problem

we!l defined in an

open space?

pay-off from this

ext_jmization in a

closed space

No.

Value of _ on the

space-like murface

from which one can

then calculate the

electric field E -

the "momentum" con-

Jugate to the already

specified field _oor-

dinate"B.

space coordinates at
the two ends of such

a normal, again per

unit of difference in

the time coordinates

of the two hypersurfaces.

Give (3) g_k.-(xl'x2'x3)

(this defines a') and

arbitrarily call the

value of x O on this

surface some number x°';

similarly, give (3}g_k

and xO". In between

choose any trial values

for the i0 potentials,

compute action, extre-

mize with respect to

choice of the poten-

tials.

Give (3)gik(xl,x2,x3)

and b(3)gik/_t; have

a simpler action prin-

ciple in which only

the "lapse function"

No(xl,x_,x 3) and the

"shift function" Nk
(xl,x2,x 3) are to be

varied.

No o

Values of N o and Nk
from which one can cal-

culate the "extrinsic

curvature" Kik of the

thin sandwich or the

"momentum" conjugate to

the geometredynamical

"coordinate" or intrin-

sic geometry (3)gik.
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, i

What equation has auto-

matically been solved by

this extremization_

Situation now in

brief

Further pay-off

Recapitulation of

what information was

required for this

prediction

Electromagnetism

ill

The initial value equation

div E = 4_p in which there

appeared superficially to

be 3 unknown functions of

position.

Have compatibl_ values
for field coordinate

and fleldmomentum on

initial space-like

hypersurface.

i|

Gravitation

The initial value equa-

tions

(Kik -6ik K} ik =

(16rrG/c4) li

(3)R +(Tr K_)2 - Tr _KK2

=. ( 16_. G/c4) T_L.L
In whlch there appeared

ostensibly to be 6

unknown functions of

position.

Have compatible val-

ues for field coor-

dinate and field

momentum on initial

space-like hyper-

surface.

Now have just the right

amount of consistent

initial value data to

predict the electromag-

netic field everywhere

in space and at all

tiBes.

Now have just the

right amount of con-

sistent initial value

data to determine the

geometry of spacetime

in past, present and

future - and hence the

inertial properties of

every infinitesimal

test particle.

(1)Maxwell's equations

(2)Law of motion of

charges

(3)Specification of

divergence-free mag-

_tic field and its

time derivative on a

closed space-like

hypersurface

(4)Specification of

positions and velo-

cities of charges

at points where their

world lines cross

this hypersurface

(1)Einstein's equations

(2)Dynamic law for the

fields or objects res-

ponsible for the stress

-energy tensor on the

right side of Einstein_

equations.

(3)Specification of

closed space-like 3-

geometry and its rate

of change with respect

to a parameter x ° - a

parameter which other-

wise has no direct

physical meaning.
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Electromagnetism Gravitation

Is relation between

"effect" and "source"

well defined? (Mach's

principle)

field.

Relation well defined

only if "source" is

understoo_to imply

specification on

space-like hypersurface

of both (I) positions

of charges an___dd(2) mag-

netic field and its

time rate of change

(4)Specification of

initial value data for

flelds or objects re-

sponsible for T_.

"Effect"-inertial -_--

erties of test particle

=geometry of spacetime.

Relation well defined

only if "source" is

understood to imply

specification on space-

like hypersurface of

both (i) density and

flow of mass-energy

an___dd(2) intrinsic 3-

geometry and its rate

of change with respect

to some parameter x °

- this latter reason-

ably enough because

how otherwise would

one have a geometry

w_th respect to

specify the distribu-

tion and flow of mass.
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Meaning O f Phrase_ "IndePendently Specifiable Coordinates"?

It is necessary to state in what sense one is to understand

the phrase, "are specified quite independently of those on the

other surface." What one says on this point depends upon the

question whether he is thinking in the context of classical

physics or quantum physics.

"Two-Surface" For_91_tion of Harmonic Oscillator Pro_le m

By way of illustration consider the simple harmonic oscil-

lator. Give the coordinate x' at the time t' and the coordinate

x" at the time t". In this way fix the end points of a trial

history,

x(t) = XH(t) (iS)

The classical history in the intervening time interval is to be

selected in such a way as to extremize the action integral

x" ,t"D

IH = r L(XH(t)'dXH(t)/dt't)dt

J 0t !

: (m/2)_(XH 2 - W2XH2)dt (19)

The solution is well known -- a simple harmonic motion of cir-

cular frequency m:

XH(t) : x H (t) - x'sin _(t"-t)+x"sin _(t-t')
classical sin w(t"-t')

(20)

Associated with this "classlcal history" is the action --
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"Hamilton's principal function" -- given by the expression

IH = [ w/2 sin _(t"-t')]_(x'2+x-2)cos w(t--t,)-2x,x°,_
classical

(21)

The Quantum Propagator and its R_lation to the Classical A_tion

In quant_um mecha_nics one gives arbi#_=_ly, not the coor-

dinates at two times, but the state function or probability am-

plitude T(x',t') at one time, t', and asks for its value _(x",t")

at some later time t". The function at the new time can be

found by solving the Schroedinger equation numerically or other-

wise. The focus of attention shifts from this equation to its

solution in Feynman's formulation of quantum mechanics. (15) A

propagator gives the desired function in terms of the arbitrarily

specified initial function:

+_

_(X" t") = _ <x",t"Ix' t'> T(x',t')dx', , (22)
O0

Feynman writes this propagator as the sum of elementary propa-

gation amplitudes,

(15)R. P. Feynman, The Principle of Least Action in Quantum

Mechanics, Ph.D. thesis, Princeton University, 1942 (unpublished);

Rev. Mod. Phys. 20, 367 (1948); Phys. Rev. 76, 769 (1949); see also

J
Philippe Choquard thesis, Ecole Polytechnique F_erale, Zurich, 1955;

and F. J. Dyson, Advanced Quantum Mechanics, pho_olithoprinted notes,

Cornell University, Ithaca, New York, 1954.
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, ' ' = Z exp (i IH/h ) . (23)<x" t"{x ,t > _H

Every conceivable history cont_ ibutes with the same weight; only

the phase differs from one history to another. Destructive

interference automatically cuts down the effective contribution

of the non-classical histories. The sum reduces in the ra._ of

the harmonic oscillator to an expression of the form

<x",t"Ix',t'> =_exp (i IH /h) (24)
classical

where in the exponent Hamilton's principal function has the

value (21).

Normal Compatible Versus Exceptional Incompatible

Specification of "Two Surface" Data iF Classical Problem

In the classical problem a difficulty arises when the time

interval (t" - t') is an integral multiple of a half period, After

an even number of half periods the coordinate must return to its

initial value; after an odd number, it must come to the negative

of its initial value. (1) If x" does not agree with x' in the

one case, or with -x' in the other case, the end point data have

been inconsistently specified. (2) Even if they have been con-

sistently give, the momentum with which the motion starts off

at the one end point -- and with which it returns to the other

end point -- is completely indeterminate. In both cases the

variational problem is indeterminate.
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No Problem of Incompatibility in Quantum Propaqator

No such problem of compatibility of the "end point data" or

"two surface data" arises in the quantum formulation. When the

interval (t"-t') is a half period, the propagator reduces to one

type of Dirac delta function,

<x",t"Ix',t'> = - i 6(x" + x') ; (25)

and to another type when the interval is a full period:

<X",t"lx',t'> = -6(x" - X ). (26)

In other words, the quantum propaqator remains well defined for

all specifications of the two surface data, regardless of any

specialities in the classical problem in one case or another.

The Quantum Problem Always at the Backqround of ClasSical

Ana lys is

No rune has found any way to escape the conclusion that

geometrodynamics, like particle dynamics, has a quantum character.

Therefore the quantum propagator, not the classical history, is

the quantity that must be well defined. Consequently it will

not be considered a source of concern that one can specify the

3-geometries (3)_, and (3)_,' intrinsic to two hypersurfaces in

such a way that the action functional for general relativity

admits no extremum. Such cases are the geometrodynamical

generalization of the special cases just encountered for the

harmonic oscillator. Only on this understanding will it be
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justified to say that the 3-geometry on one hypersurface is

specified quite independently of the 3-geometry on the other

hypersurface.

Concentration on the Case of Two Nearby Hypersurfaces

Of greatest simplicity is the case that alone will be

considered here in any detail, where the two hypersurfaces

are "close together". Then the determination of the momen-

tum from the values of the coordinate on the two surfaces

is the most immediate. This step carries one halfway through

the dynamic problem. Having consistent and singularity free

initial value data for momentum and coordinate at the initial

time, one is in a position to complete the solution -- to

determine without any ambiguity the history of the system for

at least a finite proper time into the past and future (16) .

For this purpose one uses the standard dynamical equations:

I. Hamilton's equations for a system of particles,

2. Maxwell's equations in the electromagnetic case,

3. Einstein's equations in the case of interest here.

Alternate Ways to Apply the Two-Surface Formulation of

Dynamics

(16) The proof that this can be done in the case of general

relativity is given in the book of A. Lichnerowicz, Theories

/ f .

relativistes de la qravitation et de l'electromaqnetlsme,

Masson, Paris, 1955
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Alternative ways of applying the two-surface formulation

to particle mechanics, electrodynamics and general relativity

differ from one another by the apportionment of the analytic

load between a variational principle and differential

equations.

Excluded Option I: Well Separated HTpersurfaces and

Exclusive Reliance Upon the Variational Method.

One can avoid any use at all of differential equations

in calculating the history of the system, whether a particle,

the electromagnetic field, or geometry. Insteid one can rely

entirely on the idea of extremizing an action integral

extended over the entire interval of time for which one

wants to know the history. For the particle, one specifies

x' at t' and x" at t". One regards as the function to be

varied, either x(t) alone, as in the familiar Lagrangian

variational principle of Eq. (19), or bot____hx(t) and p(t)

independentl 7, as in the Hamiltonian formulation

x",t"

x,,t,[P(t)_(t ) - _(p(t),x(t),t)]dt = extremum (27)

To express electrodynamlcs in variational language one calls

on the familiar vec 9r and scalar potentials A and e,

B = curl (2s)

E =-_/_t - grad e (29)
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so that half of Maxwell's equations are automatically satisfied.

The other four folow from extremizing the integral

I --rL(1/8_)(E2-B2)+(i.__ . - p<_)](i/c)d4x (3O)

Specified in advance are

(i) the charge and current densities p and j (both in charge

units/(length unit) 3) throughout the 4-dimensional region

bounded by the two hypersurfaces

(2) B on each of the two surfaces: in such a way that div B

vanishes -- this specification being made by giving A on

each of the two surfaces (arbitrary gauge; no effect on

the physics from the change A _ A + grad k)

Varied everywhere between the two surfaces to extremize I are c_

(quite independently) and A (subject only to the specification

of A' and A" at t' and t",respectively).

Option 1 Continued: The Variational Principle for General

Relativity

(14)
The appropriate action principle in general relativity

--when supplemented by source terms--reads

14 = _x °'' , (3)gij" {
' (3) _iJB (3) giJ/BX0

X O
' gij

+ No( (3)g)½[ (3)R_ _ (3)g'I(T r n2 -2 I(Tr _)2)]
+ 2Ni_iJ Ij

- No((3)g)½L**(g "', A .... )}d4x (31)
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This variational principle results from adding complete deriv-

atives to the familiar Lagrange integrand of general relativity,

((4) R + L) (-g) _, and translating the result into the ter-

minology of ADAM. Here L** is 8nG/c 4 times the invariant or

scalar Lagrangian for whatever fields have energy and produce

gravitational effects, expressed in terms of (i) the

covariant components of that field (the field components Fu8 in

electromagnetism for example) and (2) the elements g'" of the

matrix reciprocal to g_8:

((3)gjk _ NJNk/N_) (Nk/N_)

c,,Ji  l -c

(32)

Here (3)gjk is in turn the matrix reciprocal to (3)gjk and

N j _ (3)gjkN k " (33)

In (31) there are 16 functions of space and time to be varied

in the region between the two surfaces in such a way as to

extremize the integral. Ten of these quantities -- reasonably

enough -- are metric coefficients: the six (3)gik, free

except for having to reduce to the prescribed values at the

two surfaces; and the lapse and shift functions N O and N i

(not N i :), which are entirely freely disposable. The
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remaining six quantities, the momentum components nij, are

also adjustable without any conditions at all. In spirit

this adjustment of the momenta is like that of the particle

momentum p(t) in Eq. (27). At the start the function is free

even to the extent that its terminal values are free. However,

extremization forces in that case the condition

x(t) = _H(p,x,t)/_p (34)

from which the momentum is completely determined in terms of

the velocity. Similarly here (11) ("Palatini philosophy").

Vary (31) with respect to nij. Set the variation equal to

zero for arbitrary 6_ ij. Find thus six equations determininq

the six nij in terms of the N and (3)
gik and their derivatives.

These equations are equivalent to Eq. (12) for the momentum

in terms of the extrinsic curvature plus the definition of

Eq. (Ii) for this extrinsic curvature. If one were con-

cerned with translating the variational principle (31) back

into differential equations, instead of using it a__ssa

variational principle, he would: (I) Vary the lapse and shift

functions. (2) Set the coefficients of the four 6N equal to

zero. (3) Find in this way the four initial value equations

(16,17) that have to do primarily with geometry within the

successive hypersurfaces, (4) Obtain the other six more

"dynamic" components of Einstein's ten field equations by
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varying the six (3)gik and setting the coefficients of the

(3)
six 6 gik equal to zero. But in using (31) in its alternative

function -- to replace all differential equations (in the spirit

of Rayleigh and Ritz) -- one will (i) substitute into (31) the

expressions for the six ij in terms of the six (3)gij and the

four N_ and their derivatives, and (2) use numerical methods or

ten analytical trial functions ((3)
gij,N_) containing adjustable

parameters to extremize the action integral I. Unhappily the

extremum, rather than being a minimum or a maximum, is often

a saddle of higher order, as one can convince himself even in

the simpler problem of a single particle bound in a harmonic

oscillator potential. This kind of variational principle does

not normally lend itself either (I) at the theoretical level to

establishing existence proofs or (2) at the practical level to

doing calculations.

Most Favored Option 2:

surfaces: Use of Variational Principle to Solve 2-Surface

Initial Value Problem within the Thin Sandwich, the m

Einstein Field Equations to Predict All the Rest of

the 4-Geometry; Electrodynamics as an Example

Proofs of the existence of solutions are much more widely

known in manifolds with positive definite metric (17) than in

Two Infinitesimally Separated Hvper-

(17) C.B. Morrey, Pacific J. Math. 2, 25-53 (1952)

John Danskin, Rivista Mat. Univ. Parma _, 43-63 (1952)
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manifolds with indefinite metric. Moreover the real problem

to be treated is the initial value problem_ Once it has been

solved one knows from the work of Lichnerowicz (16) that the

solution can be continued by way of Einstein's ten field

equations. Therefore concentrate on the thin sandwich prob-

lem. The essential ideas are most easily seen in the case

of electromagnetism. The magnetic potential has been speci-

fied on both surfaces (_' and A_') but the separation between

them has been allowed to go to zero. Therefore the terms in

_2 and in _'.A_ are not adjustable in this limit. The

variational principle reduces to the form

J = /[(E2/8n) - p_d3x = extremum (35)

to be extremized with respect to the single unknown potential

_. The theory of this variational problem is well known. Out

of the extremization -- conducted analytically or by the

Rayleigh-Ritz method or in any other way -- comes a potential

that satisfies the differential equation

v2_ =- 4_p- (_/_t) div A (36)
U_A

This potential generates an electric field

E = - 5_/_t - grad e (37)

that automatically satisfies the initial value equation

div E = 4_p (38)
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One now has at hand _ and B which can serve as the consistent

starting points for the dynamic analysis. For this purpose

apply the other six equations of Maxwell and predict the

entire past and future of the electromagnetic field.

Concept of Thin Sandwich in Geometrodynamics

Similarly in relativity one seeks to adjust four potentials,

the lapse function N o and the shift function Ni, so as to

generate an extrinsic curvature tensor Kij, according to

Eq. (ii), which will satisfy initial value Eqs. (16,17).

This done, the initial value problem is solved. To formulate

the appropriate "thin sandwich" variational principle, proceed

here as in electrodynamics to the limit in which the sandwich

is indefinitely thin. One can state this idea in two alter-

native ways (14) . (I) Give nearly identical (3)g'ik and

(3)g"ik. Take any arbitrary numbers x °' and x °'' for the

labels to be applied to these two hypersurfaces. In the

definition of the extrinsic curvature Kik (Eq. (ii)) there

enters the term 5(3)gik/SX°. Adopt for this term the value

((3)gik,, - (3)gik,)/(xO" - xO').

Kik will depend on (x °'' - x °').

Apparently the value of

Actually it will not. All

that ever matters in Kik or anywhere else is the product

of (x °''- x °') by the lapse function N o . If a big value is



-50-

used for (x °'' o'- x ), a small value will come out of the

variational principle for N o , and conversely. One sees thiS

invariance property of the product also in another way, that

the normally measured interval of proper time between the two

hypersurfaces (Eq. 15) is No(x °'' - x °') . Therefore in this

formulation one takes as the quantities to be varied only

the products

_0 = No (x°'' - x°') 39)

= Nk(x°" - x°') (40)

and never lets the individually arbitrary quantities N O , N k,

xO ' X O", show up. To this conceptually simpler formulation

(3) (3)
_at is kept fixed during the variation ( gik' and

there is an alternative and mathematically sharper state-

ment. (2) Consider a continuous one-parameter (x °) family of

1 2 3
3-geometries (3) (x 0 x x ,x ) Then the initial valuegik ' '

problem under considerationisdefined by a knowledge of

(3) (3) gik/_X o ogik and _ for some one fixed value of x . The

associated variational problem is found by dropping the

factor dx O in the integrand d4x in (31).

The "Intrahypersurface Variational Principle" for the

Initial Value Problem of General Relativity

Now that only a three-fold space integration is called
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for, the next to the last term in (31) can be integrated by

parts:

_ 4_j(N i + Nj i ) . (41)2Ni n/JlJ " lJ i

In a non-Euclidean topology more than one coordinate system

is generally required to cover a manifold without singularity.

Each is defined in its own coordinate patch. (18) It might

appear that a problem of transition arises in passing from

one patch to another in the integration by parts. The

absence of any such difficulty is guaranteed by the covariant

character of the differentiations in (41). Moreover, the

surface integral disappears in the simplest example of a

closed space, a manifold with the topology of the 3-sphere

S 3. Thus, let the integration start in the neighborhood of

one point P in S 3. Let it extend out to a boundary with the

topology of the 2-sphere S 2. As the range of integration

is widened, S 2 at first swells more and more. Later it

begins to decrease in size. Eventually, as the integration

extends over the whole 3 space, the boundary collapses to

nothingness at some point other than P. No surface integral

is left. Also no derivatives of the n ij are left in (31).

(18) See for example GMD, p. 259
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Therefore everywhere that these momenta appear, they are

easily expressed in terms of the curvature tensor Kij by

(12) ; and the Kij are then expressed -- via (11) -- in

terms of the quantities that one really thinks of varying_

the lapse and the shift functions. The first substitution

leads by simple algebra to the formula,

I3 = _t(3)a - (Tr K)2 + Tr K 2 - L*(g'',A...)_

. ((3) g) ½Nod3 x

for the quantity to be extremized.

(IHS) variational principle, as in other applications of the

Lagrangian method to dynamics, the "kinetic" term (Tr K)2

- Tr K 2, appears with a sign opposite to that of the "poten-

tial" term (3)R, whereas in the initial value equation (16)

for the enerqv density these terms appear - reasonably enough

- with the same sign. The second substitution - writing the

Kij and the g_8 in terms of the four functions to be varied,

the N_, by using Eqs. (ii) and (32) -- is better left under-

stood than carried out explicitly#

(42)

In this '_ntrahypersurface"

The Also Useful Option 3: Exclusive Reliance on

Differential Equations to Analyze the Dynamics of

General Relativity
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Option 3 for analyzing the "plan" of general relativity,

like option 2, starts with a specification of (3)gik and

5(3)gik/SX° over the entirety of a closed space-like hyper-

surface; in more picturesque language, it presumes a speci-

• II

.... •._ 3-geometries (3) _ and {3)."_ . Here

"nearby" is to be tested after the event by calculating N O

and from it (Eq. (15)) finding if the proper time separation

between the two hypersurfaces is or is not small compared

to the scale of the space-like variations in (3)_" and (3)<_

In addition, the density of energy -- and energy flow -- have

to be given, just as in Option 2. The difference is only

that the four potentials N are to be found by solving the

four Eqs. (16,17) -- not by directly trying to extremize the

action integral 13 of (42). Once the lapse and shift have

been found, however, there is no difference in what one does

between Option 3 and Option 2. (1) Calculate the extrinsic _

curvature Kik. (2) Calculate the field momentum n ik. (3)

Use all ten of Einstein's equations to predict the 4-geometry

in past and future.

Verification that the Intrasurface Variational Principle

and the Initial Value Equations are Equivalent

On the right hand side of the initial value equations

stand the density of energ_ and energy flow, a total of four
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quantities. In contrast, the variational principle (42) makes

reference to all of the covariant components of the field respon-

sible for this energy. One could therefore be concerned whether the

two approaches will give the same result. To check this point, vary

the N_ in the variational principle of (42). Set the coefficients of

the 6N_ equal to zero. Finally compare with the initial value equa-

tions. The variation of the field Lagrangian is the most complicated

part of this program. Write

6[NoL*(g--,A...) ] = L6No+No(_L*/_(4) g_8) (_(4)g_8/_N7)6N 7

Evaluate the derivatives of the components of the reciprocal

metric tensor by using Eq. (32) for that tensor. Express the

derivatives of the Lagrange function in terms of the stress-

energy tensor of the field in question, employing for this

purpose the standard formula, (19)

= L**

= (SL/Bg_8) - (i/2)g_sL**

Here T_ (m -2) is an abbreviation for (8nG/c 4) times the usual

stress-energy tensor T_8 (kg m2/sec 2 m3).

(43)

(44)

Find that all those

(19) See for example L. Landau and E. Lifshitz, translated by

M. Hammermesh, The Classical Theor 7 of Fields, Addison-Wesley

Press, previously Cambridge, now Reading, Massachusetts, 1951.
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terms in (43) go out which contain an undifferentiated L factor.

Those that remain give

2LT_ _No ÷ q,k 8_k_ (45)

Here

T_ _ (T**oo

= T**/.L= (8_G/o 4)

2,kT**ok* _iNkT**ik)/N2°

Idensity of energy as corrected

for the ordinarily oblique

coordinate system in use, a

scalar with respect to coordi-

nate changes in the hypersur-

face.

(46)

and

**k

T_ -=

T**kl = T_ *k = (8nG/c 4)

(3)gkm(T_- N s Ts*_)/No;

density of flow of energy,

corrected for oblique co- \

ordinate system off sur-

face, a contravariant vector r

with respect to coordinate _
changes in the hypersurface /

(47)

The rest of the variational analysis is straighforward. One

verifies the agreement with the initial value equations in all

detail.

Precisely What Features of the Energy are Specified on the

Hypersurface?

As the quantities which are specified on the hypersurface in

the initial value equations one evidently thinks most naturally of
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** ** **

T_l_Land T L , not the much more coordinate dependent T_B.

As regards the variational principle, it is clear that it can be

changed -- if only the change reproduces the initial value

equations. Therefore the Lagrange function, which may be complica-

ted or unknown or both, can be replaced by an expression which

will have the same variation (45). Thus one comes to the

modified variation principle,

* (3 )R 2 TrKK2 2 T/.L] N13 = I {[ - (TrK) + - o

_ 2T,_k Nk ] ((3)g)½ d3x
(48)

Elimination of the Lapse Function

The lapse function N o enters only algebraically in the time

component (16) of the initial value equations and in the variational

principle (48). To bring this fact most clearly into evidence,

introduce the abbreviation

¥ij = (i/2)[Nilj * Njli

and write

_ 5 (3) gij/SxO ] (49)

(Tr 2 2 (50)

(" shift anomaly") . Then

K.. = Vij/N (51)
_3 o

Kij measures the true extrinsic curvature, having to do with

changes in space-like distances per unit of proper time between

two hypersurfaces. In contrast, 7ij performs a similar function

when one does not yet know the lapse function, or scale of proper
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time, so that one has to use a purely nominal time coordinate

x °. The "kinetic" term in the variational principle _comes

(Tr _)2 _ Tr K 2 = Y2/No 2 (52)

The modified variational principle becomes

I; = I[ 13)R- 2T_)N O - 72/No)-2T_kNkJ ((3)g)½d3x (53)

If there exists an extremum with respect to No, it occurs for

N O = [Y2/(2T**-(3)RJ½ (54)

The opposite sign for the root gives nothing physically new. With

this reversal in sign N k also comes out reversed in sign. All

that has been changed is the convention as to the direction in

which time is increasing_ Reference (14) comments about the

result (54): "Thus not only is the thickness of the thin sand-

i m

wich from (3)_ to (3)_ determined by (3)xt//and (3)x_/_ but

also its location in the enveloping (4)2_ is determinate. This

is the sense in which we discover a 3-geometry to be the carrier

of information about time in general relativity."

The Condensed Intrasurface Variational Principle as

MaPhema_i_a] _nrml,]aPinn of MR_h'R Pr_nr4n]e

Insert expression (54) for the lapse into (53) and obtain

the "condensed intrasurface variational principle ''(20) (CIVP),

i ICIVP = - I;/2 = _[[7212T_-13)R)3½ + T_kNkJl3g) ½d3x= extremum (55)
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The analogue of this intrasurface variational principle in

electr odynamics is

r[ (E2/8_) - PeJ d3x = extremum

equivalent with

(56)

E = - 5A/St - grad e _J,J

to the single differential equation

v2_ = _ 4np - (5/_t) div_ (58)

for the single potential to. In (55) the given quantities are

still the metric (3)gik of the hypersurface, the rate of change

of this metric with a parameter x °, the scalar curvature invariant

(3)
R of the geometry, and the density of energy and energy flow.

To be varied to obtain an extremum are now not four potentials

but only three, the components N k of the vectorial shift function.

They enter (55), (I) as coefficients of the energy flow and

(2) as determiners -- through their covariant derivatives of the

"shift anomaly" y2. The variational principle CIVP of (55)

expresses in precise mathematical form the principle of Mach as

formulated here (Formulation 4): the specification of a

sufficiently reqular closed 3-dimensional qeometry at two

immediately succeedinq instants, and of the density and flow of

mass-enerqy, is to determine the qeometry of spacetime_ pas t ,

present and future, and thereby the iner_i_l properties of

every infinitesimal test particle. Thus from (55), when it
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possesses a solution, one obtains the shift _. Then from (54)

one has immediately the lapse function. From these potentials

via (49) and (51) one obtains the extrinsic curvature. Then one

has in hand all the initial value data -- and consistent initial

value data -- which one needs for the integration of Einstein's

field equations and for obtaining a uniquely specified 4-geometry

(the arbitrariness in the coordinate system in this spacetime

having no relevance to its qeometrv:)

Condensed _i_al Value Equations

Make small Variations 6N k in the shift components in (55).

Set the coefficients of these variations equal to zero. In

this way arrive at three coupled second order differential

equations for the determination of the vector field N = (NI,N2,N3).

The same equations may be obtained by solving (,16) for N O (in

agreement with (54)) and substituting this result into (17). The

condensed initial value equations read

- "N +N (3) • , (3) (3) mn. (3)_ , _
(2T**_ (3)R)½[_ iJj i_i- gij ]- gij g (N_n+NrJm- gmn} J_

[('_3)gab(3)gCa_(3)gaC(_)gbd) (N_+N__ (3)_ab) (N_+IN+_(3)_cd) _½ J

= _ T/l = + (8_G/c4) [i-th covariant component of_ (59)
"density of flow of energy "

Variational Principle Equivalent to Differential Equations

Plus Boundary Conditions

These equations plus boundary conditions are equivalent to the
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condensed intrasurface variational principle (55)° The boundary

cGnditions are essential in geometrodynamics as in electrostatics

if one is to obtain a unique relation between the "source"

(density and flow of energy and gravitational radiation as

described by (3)gij and (3)gi j =(_(3)gij/_x°) and the "effect"

(the vector shift _and the 4-geometry and inertial properties

of test particles). The boundary conditions in a closed space

are obvious: the vector field N found by integration around the

space one way has to join up properly with the vector field

found by integration around the space another way; or more

simply, the vector field (due account being taken of changes

from one coordinate patch to another(18) (i) must be everywhere

requla r and (2) must lead to a regular and sinqle valued

extrinsic curvature Kij. If the space is open, the differential

equations are still well defined; but they are not accompanied

by any boundary condition. Moreover, one can no longer expect

the variational integral ordinarily to have a finite and well

defined value in the case of an open space. Therefore there

arises the built-in consequence of Mach's principle as formu-

lated here, that the space should be closed and that the

geometry ((3)_<_land (3)_ or (3) gik and 5(3)gik/_X°) should

be everywhere regular.
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III. COMMENTS ON MACH'S PRINCIPLE AND THE INTRASURFACE

VARIATIONAL PRINCIPLE

Issues Not Discussed Here: Uniqueness

It would be an enormous labor to take up one by one all

the questions that are lezt unanswered here and treat them

systematically. Moreover, there is wanting one key element

in the discussion -- a proof that the solution of the

variational problem in (55) (when there is a solution) is unique (20) .

(20) The question of uniqueness of the solution of the initial

value problem is well understood in the case of electrodynamics in

a closed orientable 3-manifold. Given everywhere B and B one

only then arrives at a unique _E when one specifies the jump Ak_

in the potential in travelling the circuit of the k th independent

handle or "wormhole" of the topology, where k runs over the

values from k = 1 to k = R 1 = R 2 = the second Betti number of

the manifold. These numbers determine the charge or flux of

lines of force trapped in the topology. That the numbers Ake

have to be fixed follows most evidently from the occurence of a

surface integral r6_(_.d_) in the passage from the variational

principle (35) to the differential equation (36). Does topology

make an equally forceful appearance in the initial value equations

of general relativity? Is there a qeometrodynamical analoque of
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electric charqe? No arqument for the existence of such a

charqe follows from the variation principle as discussed in

the text ("coordinate representation") The surface integral

of the quantity hi' ]N i shows up in the integration by parts

of Eq. (41). In the discussion of the text following that

equation it is remarked that this surface integral vanishes

when the topology is that of a 3-sphere (no handles). How-

ever, the surface integral als_____0vanishes (C. W. Misner) for

a_n__ closed orientable 3-manifold. The nature of the 2-sur-

faces encountered in these integrals is the same in geometro-

dynamics as in electromagnetism. Most simply, one such

surface is conceived as the point of contact between two

balloan-like expanding fingers that are feeling their way

down into a wormhole from opposite mouths. The first factor

in each integrand -- EEin the one case, _ij in the other

case -- is the same in this respect, that the quantity in

question has physical meaninq and is a field momentum. The

difference comes in the character of the second factor --

the potential jump 6_ in electrodynamics, the metric potential

N i in geometrodynamics. Only the qradient of _ has signifi-

cance in electromagnetism, so that _ itself can suffer a net

change in going around the circuit of a handle. On the other
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hand, the quantity N. directly governs the distance between
1

points on the two nearby hypersurfaces that have specified

coordinates. Unlike the electric potential _, this quantity

must return to its original value after the circuit of a

handle. Therefore a geometrodynamic analog to electric

charge -- if one is to come in at all -- will have to show

up in the conjugate representation of the initial value

problem (not analyzed here).

Effect of Additional Mass on Inertia not Discussed

On the other side of the story there are many homely

questions about the physical content of Mach's principle that

ought to be spelled out and that now can be spelled out. An

example is the question how the inertial properties of a sun

and planet are affected if centered around them at some

distance is constructed a very large spherical shell of mass.

Here it is necessary to recognize that in one way the inertial

properties are affected and in another way they are not,

according as the clocks in use are within the shell or far

outside it. Again, subtleties arise which are better left

unmentioned than discussed inadequately.

instantaneous or Retarded Effect of Source on Test Particle

Another question has to do with the speed with which t_
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supposed inertial effects of sources are propagated to the

test particles which they affect. In the equation (58) con-

necting source and effect even in electrodynamics, the effects

of the charge distribution on the potentlal appear formally to

be propagated instantaneously within the space-like hypersurface.

Yet the whole analysis goes back to standard Maxwell electro-

dynamics, in which effects are all propagated, not instantan-

eously, but with the speed of light. That there is no

inconsistency between the instantaneous potential of (58)

and the retarded potentials of usual radiation theory is

(21)
well known. Analogously one finds also in geometro-

dynamics a basically elliptic equation, describing what

appears formally to be an instantaneous propagation of effects

from one place to another in a spacelike hypersurface. Yet one

knows that a disturbance in a source at one point in spacetime

will propagate to another point only with the speed of light. (22)

In geometrodynamics as in electrodynamics the formalism itself

guarantees that there can be no discrepancy between effects

calculated in the two different ways from the same sources.

(21) E. Fermi, Rev. Mod® Phys_ 4, 87 (1932).

(22) Marcel Riesz, Acta Mathematica 8__i, i, 223 (1949)
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Therefore in principle there can be no trouble from the e

question mentioned earlier: How can Mach's principle make

sense when it implies that the accelerated test mass acts

on all the other masses in the universe, and that they in

turn have to act back on this particle? (23) Of course one

would like here, as in Fermi's analysis of electrodynamics,

to see more of the inner workings of the machinery by which

(i) the propagation in time and (2) a formally instantaneous

propagation necessarily yield the same solution of Einstein's

field equations_

Do Sources Have to be Followed Back into Past when

Model Universe Wag in a Sinqular State?

That all effects appear formally as propagated instan-

taneously within the space-like hypersurface disposes of

another question about Mach's principle. Let one evaluate

the inertial effects on a given test particle -- that is to

say, the effects on the geometry in a given neighborhood

-- caused in the sense of Mach by more and more remote sources

of mass,energy, one appears to be forced farther and farther

(23) For more on the equivalence between retarded and other ways

of evaluating potentials in electrodynamics, see for example

J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. i__7 157 (1945) and

21 425 (1949)
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back in the past. On this basis one ultimately comes to

regions where the geometry is singular and where it is not

possible to follow back any further the dynamical evolution

of the geometry by employing Einstein's field equations only

__al i.... I (24)at the -_---_ _ ..... No matter: Specify the dynamic

problem by giving the "sandwich" type of data on an initial

space-like hypersurface: give (3)_/ , 5(3_/5xO ' and the

density and flow of energy. Then the integral that one has to

extremize or the triplet of differential equations that one

has to solve make no reference to anything going on back in

the past at a time or place where the geometry -- calculated

classically -- may be singular.

Model Universe Clean of Constants of Motion?

Still another question is this, "what are the true physical

constants of the motion" in general relativity. It is well

known that total energy cannot be defined and has no meaning

in a closed universe. (19) The question has recently been

raised (24) whether such a system is not in principle clean of

all constants of motion whatsoever. One can compare a model

universe in Some respects with a billiard ball set into

(24) This question of singularities is raised and discussed

further in an article by the author in press in the special

cosmology issue of The Monist, Vol. 47, No. i, Box 268,

Wilmette, Illinois.
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motion on a triangular billiard table which has sides e,

and I. The motion is quasiergodic. Started in one way the

billiard ball will come indefinitely close to repeating the

motion it would have had if it were started in another way.

To an observer with only a finite resolving power the only

difference in the two motions might be one of rate or energy.

Not even this difference can manifest itself in the case of

a model universe. (24) Nevertheless, there is no more difficulty

in defining the dynamics of the billiard ball (by giving x °,

y' at t' and x", y" at t") than there is in defining the

dynamics of geometry (by giving (3)_' (3)and _). In other

words, if there are no constants of the motion they will

hardly be missed_

Different Masses on the Two Hypersurfaces

Now for questions on which something more definite can

be said. First, how can it possibly make sense to specify

(3)_land (3)_1_rbitrarily? Are d%ere not all sorts of

conditions of compatibility that have to be satisfied_ Con-

sider for example the case of a space that is asymptotically

flat. From the rate of approach to flatness at great

distances,

* r 2ds 2 (1 + 2m /r)dr 2 + (d82+ sin2@ d_ 2)

one can evaluate the mass and energy of the system. If this

(60)
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has to be the same on both hypersurfaces, how many other con-

stants must there not also be which have to agree between

(3)_' and (3)_ To discuss this question more fully, consider

a specific example, the Schwarzschild solution of Einstein's

field equations,

da 2 = -dT 2 = -(I - 2m /r)dt 2 + (i - 2m*/r) -I dr 2

÷r2(d82 + sin28 d_ 2) (61)

(3) ,
Let _J be the hypersurface t = t' = constant. On this the

asymptotic geometry follows Eq. (57). Let the second hyper-

surface (3)_"be described at small distances by giving t as

some reasonable and regular function t" o£ r, 8, and _, going

over at large distances into the formula

* ½
t" = (8m I r) (62)

with m I = a constant. Taking the differential of this

expression and substituting into (58), one finds that the

second hypersurface has the asymptotic geometry

ds 2 _[I + 2(m* - ml)/r_dr2+ r2(d82 + sin2e d_ 2) (63)

The masses not only can be different but -- in the example --

must be different_ One's first surprise at this result traces

back to a semantic obscurity in the word "flat":

Meaning 1: The intrinsic 3-qeometr7 is asymptotically flat.

Meaning 2: The intrinsic 3-geometry is asymptotically flat
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and also the extrinsic curvature is zero.

Only when "flat" is used in sense 2 do the apparent masses

have to agree between two as_ptotically flat geometries.

However, the two-surface formulation of relativity focusses

on intrinsic 3-geometry, so that "f]_t" there _ ,,_ed in

sense I. There i__ssno problem of compatibility between the

, C )
two 3-geometries in the example. Rene Thom "25 has even

shown that one can fill in between two 3-geometries of

different topoloqy with a non-singular topology. Whether

and when the geometry laid down on that topology can _Iso

be non-singular is a deeper question_

Question of E£fectlvely Elliptic Character of the

Thin Sandwich Problem

Does the CIVP (58) -- or the triplet of differential

equa£ions to which it corresponds -- have elliptic character?

This issue brings to mind the question whether the equation

d2_/d82 + (_ - VoCOS 8)_ = 0 (64)

has eigenvalue character. One might think not, to look at the

regions of 8 where the "oscillation factor" or "effective

kinetic energy factor" (4 - VoCOS 8) is negative. There the

(25) R. Thom, Comment. Math. Helv. 28, 17 (1954), Chapter IV.

also J. W. Smith, U. S. Nat. Acad. Sci., Proc. 46, iii (1960)

See
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solution is curved away from the 8 axis. However, what counts

in the end for the question of nodes and eigenvalues is the

region where this factor is positive and the solution is

oscillatory. The equation is effectively oscillatory in

character (for _ sufficiently in excess of -Vo). It is

difficult in the case of (58,59) to be precise at this stage;

but one has the impression that it is in a comparable sense

effectively elliptic. Space in the "thin sandwich" problem

is divided up ordinarily into regions where (2T */_- (3)R)

is positive -- and where therefore also the shift anomaly

y2 has to be positive -- and regions where the second quantity

has to follow the first in changing sign. At the interface

between one such region and another the anomaly Y2 has to

change sign. This situation reminds one -- to use another

analogy -- of the theory of buckling of shells, and of con-

ditions at the boundary between one region of crumpling and

another.

As the shift anomaly Y2 now comes so centrally into the

discussion, a few words about it are in order. Consider the

equation for the eigenvalues of the extrinsic curvature tensor

Kik -- or rather, of the closely related shift tensor

Yik = NoKik. Consider the determinant
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i 2

(Yl - X) ¥1

1
Y2 (y2 2 i)

1 2

Y3 Y3

3
Y1

3
Y2

3
(Y3 - t)

= det yi k - (Y2/2)I + (Tr Y3 12 - k3 (65)

k
A change in coordinates changes the Yi individually but not

the eigenvalues i and consequently not the coefficients of the va-

rzous Fowers of _ on the right hand side of (65). Therefore

consider a system of coordinates such that at the particular

k

point of interest the shift tensor Yi is diagonal. Let

the elements down the diagonal -- the eigenvalues I -- be

denoted by A, B, C. Then the coefficient of -l in tne

expansion of the secular determinant (A-l)(B-l)(C-l) is

(BC + CA + AB) 1 [ (A + B + C) 2 _ (A 2 + B2 + C 2) ]

1

= 2 [(Tr .y.)2 _ Tr ?2] = (1/2) (shift anomaly) = Y2/2

Associated with the point in question consider a three

dimensional space with coordinates A, B, C. Then the shift

tensor is represented by a single point in this space. More-

over this point is independent of the choice of coordinate

system in the hypersurface. In the space (A, B, C) construct

through the origin a line with direction cosines (3"½,3-½,3-½).

Construct a double cone with this line as axis with an angle

of opening O such that
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cos 8 = 3-'½ = 3-½scalar product of (i,i,i) with

I (i,0,0) or /

(0, 1,0) or

(o,o,l) ° (67)

Then any point o__nna coordinate axis lies o__nnone or other half

of the cone. Every point on a coordinate axis also annuls

the shift anomaly, according to (66). It takes only a few

more steps to show that the shift anomaly Y2 is

(i) zero for every point o__nneither cone;

(2) positive for every point within either cone; and

(3) negative in the neutral space between cones.

To each of these three cases may be said to correspond a

k
particular character of th shift tensor Yi " What is the

detailed value of the shift tensor lS only Settled by extremi-

zation of the CIVP -- or by integration of the initial v_ ue

equations with appropriate boundary condition -- and is there-

fore governed by the initial value data all over the hypersurface.

However, only the local value of the quantity (2T **Iz - (3)R) -_

read out of initial value data -- is required to determine the

character of the shift tensor. Turn now from comments on the

general problem to a particular example.
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Example Where Both Hypersurfaces that Bound the Thin

Sandwich have Ideal 3-Sphere Geometry

Let both hypersurfaces have the geometry of the ideal

sphere

9 y2 z2x" + + + w _ = 1 ;

thus for (3)_ i (give it the name x ° '._

ds 2 = a,2[dx 2 + sin2x(d82 + sin28d_02) 3

and for (3)<]"(give it the name x°+_x ° '.)

ds 2 = a,,2[dx 2 + sin2M(d@ 2 + sin28d_ 2) ]

(68)

(69)

where a' and a" are constants. Or to use another language,

consider a one parameter family of such hypersurfaces,

cnaracterized by a parameter x°:

a = a(x °) (70)

and pick some fixed value of x °, thus specifying

a and da/dx O (_(a" - a')/Ax °) . (71)

(As remarked earlier, the value of Ax ° will drop out of the

results at the end.) The remaining initial value data comprises

the energy flow, which we set equal to zero, and the energy

density, which we assume independent of position:

T **_ = constant (independent of 7,8,_) (72)

The question now is: What 4-geometry to fill in between the

two hypersurfaces so as to satisfy the thin sandwicn equations?

The time-like perpendicular erected to (3)_' at the point
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X,8,_ will have to be assigned a certain length. Also it will

be necessary to tell what point it touches on the hypersurface

(3) ._" , or to tell what the starred quantities are in the

following formula for the coordinates of this point:

X-7*, 8-0", _-_* (73)

On account of the symmetry of the sphere it will be simplest

to assume -- as a trial -- the same angles for both points, or

to take all the starred quantities equal to zero. Thus the

shift function is assumed zero:

N Y = 7*/Ax ° = 0, etc. (three equations) (74)

Now for the shift tensor: It has to do with the fractional

increase -- between one hypersurface and tne other -- in the

distance between points with corresponding coordinates, say

(_,8,_) and (_+dM, 8+d6, _+dc0). But this increase for the

case we are considering is the same in all directions and at

all places, and is in direct proportion to the fractional increase

in the value of the radius.

identical:

k
Thus the eigenvalues of 7i are

= (l/a) (da/dx °)

The point in the space (A,B,C)

double cone, right on the axis.

(75)

lies inside one half of the

The shift anomaly is positive:

A = B = C = __fractional increase in radius)

(change in the highly nominal parameter x o)
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¥2 = (Tr y)2 _ Tr 7 2 = (6/a 2) (da/dx °)2 (76)

but independent of position. Likewise the covariant derivative

k
of y i Is zero and the N i vanish. These circumstances guarantee

that the condensed initial value equations (59) are automatically

satisfied.

or

It only remains to find the lapse function No:

72/N _ = 2T**_ - (3)R (77)

(6/a2) (da/NodX°) 2 = 2T**I_ - 6/a 2. (78)

Instead of actually solving for No, it is better to recognize

that NodX° is the proper time separation -- call it dt --

between hypersurfaces, the parameters attached to whicn are

x ° and x ° + dx °, and is therefore directly the physical

quantity of interest. Thus write

(da/dt) 2 = (a2_)T** - i_ (79)

The dynamics of the model universe are completely determined

by (79) as soon as one puts in the law of change of energy den-

sity with expansion:

** I£
T = (8nG/c4) (Mc2/2u 2a3) (80)

for a universe filled with inchoate dust (Friedmann universe) ;

and

**I_
T = constant/a4 (81)

for a system filled witn isotropic radiation (Tolman universe).



-76-

Question of uniqueness. The Linear Approximation

The purpose here was not to take up old problems anew,

but to prepare the way in a simple example to investigate th_

uniqueness of the 4-geometry determined by (3) gik, _ (3) gik/_X o,

'_ T* ' ' N iT "_ and 4, . Suppose the vector shift function =

(_*,8*,_*)/Ax ° is no___tassumed to be zero but inves£igated in

terms of the equations themselves. Will one find oneself with no

alternative except the familiar solution already sketched out?

Unfortunately the three coupled second order equations to be

solved are only quasilinear, not linear. The problem appears

difficult without some deeper mathematical considerations to

draw on which do not present themselves immediately. Therefore

no decisive results can be offered here. What ha___ssbeen investi-

gated is the cas_ where the contribution of the shift vector

N i to the shift tensor

7ik =(1/2)(Nil k + Nkl i - 5(3)gik/SXO ) (82)

is SO small compared to the "main term" (Eq. 75) that one is

justified in treating the condensed initial value eqs. (59) as

linear in Ni. These equations then take the form

(sin _) -2 (_2X*/_ 82+ (sin e)-2_2_*/_2+ cot 8 _X*/_8

+ 4_*)-(_/_X)(_*/_ + sin 8)-i(_/_8)(8*sin 8) = 0, (83)

and
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sin M(8/8_5 (sin _ 88*/_7)+(sin 8)-2(82%*/802 )

+ 28* -(sin M)-3(8/8_5 (sin3M 8X*/%_)

-(sin 85-2(5/885 (sin28 8_*/8_5 = 0

and

(845

One can seek a solution by writing

(m)
X*(X,8,_5 = _f_,m(_5 Y_ (8,_) (865

No thoroughgoing analysis along this line has been completed.

However, Professor C. W. Misner was kind enough to point out

at the Warsaw conference that the equations ought in principle

to admit of rotations. This point has since been tested and

verified. It obviously makes no difference to the geometry of

the 3-sphere (3)_'whether one set of hyperspherical polar

coordinates _,8,_ or a rotated set is used to describe the

location of the points. However, it does make a difference to

the coordinate-dependent shift vector _. To fill in between

(35_'and (3)_'%ith a thin-sandwich (4)_ __ compatible with

the intrasurface variational principle or initial value equations

-- does not in itself fix the values of these quantities. The

time-like normals that reach between the one hypersurface and

the other, which start at (_,8,_5 on one hypersurface, and also

(855

sin28 sin X(8/8_)(sin _ 5e*/8_)+sin 8(8/885 (sin 8 8_*/88)

-(sin xS-3(8/SM)(sin3x 8X*/8_)-sin 8(8/_85 (sin 8 88"/5_) = 0
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end at (M,8,_,) on the other hypersurface, will end at different

values of (_,8,_) when a rotated coordinate system is used:

(_-_*,8-8",_-_*).

Shifts Produced by the Six Independent Rotations

The calculation of the starred changes in the angles under

a typical small rotation is most easily made by going to

cartesian coordinates:

x = a sin M sin 8 cos

y = a sin _ sin _ sin

z = a sin 7 cos 8

w = a cos (87)

There are six independent small rotations out of which the

most general small rotation is constructed by linear combination.

Consider as an example a turn by the small angle 8zw in the

(z,w) plane

dx = 0, dy = 0

dz = ezww,

dw = -ezwz. (88)

The resulting change in the polar angle 8 is

de = cos28 d(tan e) = cos28 d[(x2+y2)½/z]

= - cos2e (x2+y2)½ x-2 8zw w

= - cot _ sin 8 ezw (89)

similarly one finds the changes in all three coordinate angles

under all six independent rotations (Table V).
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Table V. Changes in polar angles on 3-sphere brought about

by_ the six independent types of rotation.

" , r " I T.... ... " ' , . _ ..... , j

......... X* 8* e*

_ i wl i , , .,,m l

8,,, 0 -_s_n _ cot e cos

8zx 0 -cos _ cot % sin

Oxy 0 0 -I

BXW sin 8 cos _ cot 7 cosB cos_ -cotxsin_/sin8

%yw sin 8 sin _ cotx cos% sin_ cotxcos_/sin%

8zw cos 8 -coty sin 8 0

It is easy to verify that each line of Table V represents a

solution of the linearized initial value Eqs. (83,84,85). It is

the conjecture that there are no other independent solutions of

these equations which are free of truly geometrical singularity

(25)
-- as distinguished from coordinate singularity over the

entire 3-sphere.

Even if and when this conjecture can be established, there

will remain the question of uniqueness of the equations for this

(25) In principle all question of what is a coordinate singularity

and what is a truly geometrical singularity can and should be

eliminated by the useof two or more coordinate patches (reference

18) to eliminate all singularities in the coordinate systems that

cover the 3-sphere.
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two sphere problem in their full non-linear form (59). After

that will be the question of uniqueness in more general

situations.

Assessment of Mach's Principle

Pending the investigation of these apparently difficult

mathematical questions, it would not appear unreasonable to adopt

as a working hypothesis the position (formulation 4 of Mach's

principle) that the specification of a sufficiently regular

closed 3-dimensional geometry at two immediately succeeding

instant, and of the density and flow of mass-energy, is to

determine the geometry of spacetime, past, present and future,

and thereby the inertial properties of every infinitesimal

test particle. In this sense it is proposed to view Mach's

principle as the boundary condition for Einstein's field

equations, and an essential part of the "plan" of general

relativity. The condensed intrasurface variational principle

(58) is the most compact mathematical statement available of

this interpretation of Mach's principle. As conceived here,

it carrier with it the tacit requirement that the model

universe be closed.
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APPENDIX: THE TAUB UNIVERSE INTERPRETED IN TERMS OF

GRAVITATIONAL RADIATION OF _%XlYu%L WAVE LENGTH.

The Taub universe (8) is free of any "real matter" at all.

Taub derived this solution of Einstein's equations,

do s = _d_ _ = VI dx _ + (y1sin_x + 7_cos2x)dy 2

with

+ 27_ cos x dy dz + y_dz 2 - 71 7s dt2 ,

71 = cosh t/4 cosh _(t/2),

Ya = I/cosh t,

from arguments of group theory having nothing directly to do

with the kind of considerations which are the center of attention

in this report. Therefore, it is of interest to see how one can

be headed towards the same solutions by a natural physical line

of reasoning.

Replace the dust in the Friedman universe by electro-

magnetic radiation distributed uniformly in space and in

direction. One arrives at the Tolman universe (26) During

its expansion and reaontraction the wave length of every

standing wave varies as the radius a of the model universe.

(26)R.C. Tolman, Relativity, Thermodynamics and Cosmology,

Clarendon Press, Oxford, 1934.
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In consequence the density of mass-energy varies not as i/a 3,

as in the Friedmann universe, but as i/a 4 . Replace the

electromagnetic radiation by gravitational radiation of short

wave length. There isn longer any "real" density of mass-

energy on the right hand side of Einstein's equation. However,

the fine scale ripples in the geometry bring about the same

type of larger scale curvature as would be caused by a "real"

distribution of mass-energy. Let 6g denote the local root

mean square amplitude of the fluctuations in the metric and

let _ = I/2_ = (wave length}/2_ denote their reduced wave

length. Then the effective density of mass-energy associated

with the gravitational radiation is of the order

T_ effective (c_/8_G) (6g/_)_

To curve a space up into closure with a radius which at the

moment of maximum expansion has the value a° requires an

energy density given by the equation

or

(3) R : (16_Glc 4)_ ,

61a o ,._ 2(6gI_) _

Thus the amplitude of the ripples need not be great

6g(at maximum expansion)

if the wave length is short.

During the expansion and recontraction the energy density,

proportional to (6g/_) s, necessarily varies as i/a 4.
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Consequently the amplitude of the ripples varies in

accordance with the formula

8g(t),-_ constant I _(t)/a2(t)

-_ constant_/a(t)

3'I:Igo/a(t)

'I"In)( 
dO/ c*i

Here the last expression refers to the case where the

perturbation in the otherwise ideal spherical geometry

is described by a hyperspherical harmonic (27) of order n.

It is not reasonable to consider the factor 3'f_ in this

order of magnitude formula as a reliable number',

From considering a gravitational wave of very short

wave length it is natural to turn to the opposite limiting

case where the order n has the minimum possibl-e value and the

wave length has the _maximum possible value which will fit

into the 3-sphered The corresponding hyperspherical

harmonic has well defined symmetry properties (27). Possession

of these symmetry-properties, and of the critical amplitude

required for closure, are the-features of the special

_ravitational wave that gives the Taub universe.

The Taub _universe is homogeneous but not isotropic :

the curvature differs from one direction to another, but

the principal values of the curvature do not change from

place to place.

(27)E. Lifshitz, J. Phys. U.S.S.R. I__0, 116 (1946).
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The curvature provides a morereasonable way of talking

about the perturbations in the geometry than does the quantity

8g for a well known reason: neither out of the metric

coefficients nor out of their first derfvati-ves can one form

coordinate-independent _ independent quantities. For the

order of magnitude of .typical component-s of the f-luctuation

part of the curvature in a local Lorentz frame one has the

es tima te

 (t)wave

-J 6g/(a/n) _

N nao/a_ (t) ,

as compared to the typical component of the curvature of

the background geometry,

_background 1/a_ (t) Q

Thus the mode of longest wave length and lowest n is the

one for which the perturbations in the geometry -- as

measured by the differences in the curvature in different

directions -- are not greatest (as one-might have thought

from the expression for-8g) but least.

At early and. late stages this perturbation becomes

percentagewise larser and larger and the geometry

ultimately deve,l_ps--infinite curvature, in accordance

with what appears to be a general principle (28)

\
\

FFI_

(28)GMD pp. 61-64.

f


